In this work laser detection and tracking system (LDTS) is designed and implemented using a fuzzy logic controller (FLC). A 5 mW He-Ne laser system and an array of nine PN photodiodes are used in the detection system. The FLC is simulated using MATLAB package and the result is stored in a lock up table to use it in the real time operation of the system. The results give a good system response in the target detection and tracking in the real time operation.
Desalination is a process where fresh water produces from high salinity solutions, many ways used for this purpose and one of the most important processes is membrane distillation (MD). Direct contact membrane distillation (DCMD) can be considered as the most prominent type from MD types according to ease of design and modus operandi. This work studies the efficiency of using DCMD operation for desalination brine with different concentration (1.75, 3.5, 5 wt. % NaCl). Frame and plate cell was used with flat sheet PTFE hydrophobic type membrane. The study proves that MD is an effective process for desalination brines with feed temperature less than 60˚C especially for feed with low TDS. 37˚C, 47˚C, and 57˚C was feed t
... Show MoreAbstract
The removal of water turbidity by using crumb rubber filter was investigated .The present study was conducted to evaluate the effect of variation of influent water turbidity (10, 25 and 50 NTU), media size (0.6and 1.14mm), filtration rate (25, 45 and 65 l/hr) and bed depth (30 and 60 cm) on the performance of mono crumb rubber filter in response to the effluent filtered water turbidity and head loss development, and compare it with that of conventional sand filter.Results revealed that 25 l/hr flow rate and 25 NTU influent turbidity were the best operating conditions. smaller media size and higher bed depth gave the best removal efficiency while higher media size and small bed depth gave lower head
... Show MorePorous silicon (PS) layers are prepared by anodization for
different etching current densities. The samples are then
characterized the nanocrystalline porous silicon layer by X-Ray
Diffraction (XRD), Atomic Force Microscopy (AFM), Fourier
Transform Infrared (FTIR). PS layers were formed on n-type Si
wafer. Anodized electrically with a 20, 30, 40, 50 and 60 mA/cm2
current density for fixed 10 min etching times. XRD confirms the
formation of porous silicon, the crystal size is reduced toward
nanometric scale of the face centered cubic structure, and peak
becomes a broader with increasing the current density. The AFM
investigation shows the sponge like structure of PS at the lower
current density porous begi
In this work, enhancement to the fluorescence characteristics of laser dye solutions hosting highly-pure titanium dioxide nanoparticles as random gain media. This was achieved by coating two opposite sides of the cells containing these media with nanostructured thin films of highly-pure titanium dioxide. Two laser dyes; Rhodamine B and Coumarin 102, were used to prepare solutions in hexanol and methanol, respectively, as hosts for the nanoparticles. The nanoparticles and thin films were prepared by dc reactive magnetron sputtering technique. The enhancement was observed by the narrowing of fluorescence linewidth as well as by increasing the fluorescence intensity. These parameters were compared to those of the dye only and the dye solution
... Show MoreIn aspect-based sentiment analysis ABSA, implicit aspects extraction is a fine-grained task aim for extracting the hidden aspect in the in-context meaning of the online reviews. Previous methods have shown that handcrafted rules interpolated in neural network architecture are a promising method for this task. In this work, we reduced the needs for the crafted rules that wastefully must be articulated for the new training domains or text data, instead proposing a new architecture relied on the multi-label neural learning. The key idea is to attain the semantic regularities of the explicit and implicit aspects using vectors of word embeddings and interpolate that as a front layer in the Bidirectional Long Short-Term Memory Bi-LSTM. First, we
... Show MoreDue to the continuous development in society and the multiplicity of customers' desires and their keeping pace with this development and their search for the quality and durability of the commodity that provides them with the best performance and that meets their needs and desires, all this has led to the consideration of quality as one of the competitive advantages that many industrial companies compete for and which are of interest to customers and are looking for. The research problem showed that the Diyala State Company for Electrical Industries relies on some simple methods and personal experience to monitor the quality of products and does not adopt scientific methods and modern programs. The aim of this research is to desi
... Show MoreWildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob
... Show More