In this work, pure and copper mixed oxide PAni nanofiber thin films are successfully synthesized on silicon substrates by hydrothermal method and spin coating technique at room temperature with thickness of about 325 nm. The structural, surface morphological, optical and photoconductivity properties have been investigated. The XRD results showed that PAni films have crystalline nature, CuO and PAni/CuO nanostructure composites are monoclinic polycrystalline structure. The FESEM images of PAni clearly indicate that it has nanofiber-like structure, whereas the CuO film has spongelike shape. The surface morphology analysis of PAni/CuO composite shows that nanofiber caped with inorganic material which is CuO is a core-shell structure. Optical characterization shows that the direct electronic transition is allowed in the energy gap. The values of energy gap for PAni nanofibers and CuO are 3.98 eV and 5.29 eV respectively. The spectral response of PAni nanofibers, CuO and PAni/CuO composite was studied. The values of responsivity and quantum efficiency of PAni/CuO composite are larger than those for pure PAni nanofibers. One can conclude that with mixing, the sensitivity is higher than that without mixing and is found to be 220 %. PAni/CuO composite exhibits fast rise time of 0.32 s with full time of 0.41 s, while slow rise time of 0.67 s and 0.38 s was respectively observed for PAni nanofibers and CuO with full time of 3.32 s and 1.19 s.
This paper is concerned with introducing an explicit expression for orthogonal Boubaker polynomial functions with some important properties. Taking advantage of the interesting properties of Boubaker polynomials, the definition of Boubaker wavelets on interval [0,1) is achieved. These basic functions are orthonormal and have compact support. Wavelets have many advantages and applications in the theoretical and applied fields, and they are applied with the orthogonal polynomials to propose a new method for treating several problems in sciences, and engineering that is wavelet method, which is computationally more attractive in the various fields. A novel property of Boubaker wavelet function derivative in terms of Boubaker wavelet themsel
... Show MoreThe aim of this paper is to design artificial neural network as an alternative accurate tool to estimate concentration of Cadmium in contaminated soils for any depth and time. First, fifty soil samples were harvested from a phytoremediated contaminated site located in Qanat Aljaeesh in Baghdad city in Iraq. Second, a series of measurements were performed on the soil samples. The inputs are the soil depth, the time, and the soil parameters but the output is the concentration of Cu in the soil for depth x and time t. Third, design an ANN and its performance was evaluated using a test data set and then applied to estimate the concentration of Cadmium. The performance of the ANN technique was compared with the traditional laboratory inspecting
... Show MoreAbstract
Although the rapid development in reverse engineering techniques, 3D laser scanners can be considered the modern technology used to digitize the 3D objects, but some troubles may be associate this process due to the environmental noises and limitation of the used scanners. So, in the present paper a data pre-processing algorithm has been proposed to obtain the necessary geometric features and mathematical representation of scanned object from its point cloud which obtained using 3D laser scanner (Matter and Form) through isolating the noised points. The proposed algorithm based on continuous calculations of chord angle between each adjacent pair of points in point cloud. A MATLAB program has been built t
... Show MoreThis paper proposes a neuro-fuzzy system to model β-glucosidase activity based on the reaction’s pH level and temperature. The developed fuzzy inference system includes two input variables (pH level and temperature) and one output (enzyme activity). The multi-input fuzzy inference system was developed in two stages: first, developing a single input-single output fuzzy inference system for each input variable (pH, temperature) separately, using the robust adaptive network-based fuzzy inference system (ANFIS) approach. The neural network learning techniques were used to tune the membership functions based on previously published experimental data for β-glucosidase. Second, each input’s optimized membership functions from the ANF
... Show MoreObjective: Evaluation of the poly ether keton keton polymer (PEKK) coating material on the commercial pure titanium disks (CP Ti) with or without laser surface structuring. Design: In vitro experimental study of PEKK polymer coated material on the CP Ti disks with or without laser surface structuring. Materials and methods: coating the surface of the commercial pure titanium (CP Ti) disks with PEKK polymer was performed via using frictional mode CO2 laser, then the samples disks analyzed by using FESEM. Results: the FESEM reveal good adherence and distribution of the PEKK coated material over the CP Ti substrate by using the frictional mode CO2 laser at 2 watt and 6 ms pulse duration. Conclusion: the frictional mode CO2 laser considered an
... Show MoreObjective: To evaluate the functional outcomes after extended curettage and reconstruction using a combination of bone graft and bone cement (sandwich). Methodology: In this prospective case series 16 skeletally mature patients with primary giant cell tumor around the knee were included. Patients with previous surgically treated, malignant transformation, degenerative knee changes and those presenting with pathological fracture were excluded. The tumor was excised with bone graft filling space beneath the articular cartilage and a block of gel foam was placed over the cortical surface of picked bone graft. Remaining cavity was filled with polymethylmethacrylate cement (sandwich) with or without internal fixation. The func tional evaluation
... Show More