In this work, pure and copper mixed oxide PAni nanofiber thin films are successfully synthesized on silicon substrates by hydrothermal method and spin coating technique at room temperature with thickness of about 325 nm. The structural, surface morphological, optical and photoconductivity properties have been investigated. The XRD results showed that PAni films have crystalline nature, CuO and PAni/CuO nanostructure composites are monoclinic polycrystalline structure. The FESEM images of PAni clearly indicate that it has nanofiber-like structure, whereas the CuO film has spongelike shape. The surface morphology analysis of PAni/CuO composite shows that nanofiber caped with inorganic material which is CuO is a core-shell structure. Optical characterization shows that the direct electronic transition is allowed in the energy gap. The values of energy gap for PAni nanofibers and CuO are 3.98 eV and 5.29 eV respectively. The spectral response of PAni nanofibers, CuO and PAni/CuO composite was studied. The values of responsivity and quantum efficiency of PAni/CuO composite are larger than those for pure PAni nanofibers. One can conclude that with mixing, the sensitivity is higher than that without mixing and is found to be 220 %. PAni/CuO composite exhibits fast rise time of 0.32 s with full time of 0.41 s, while slow rise time of 0.67 s and 0.38 s was respectively observed for PAni nanofibers and CuO with full time of 3.32 s and 1.19 s.
Abstract:
In this study a type of polymeric composites from melting poly propylene as a basic substance with Palm fronds powder were prepared. Evaluation of polymeric composites was done by studying some of it is mechanical properties, which included:Yong modulus (E), Impact Strength (I.S), Brinell hardness (B.H) and Compression Strength (C.S). The polymeric composites were studied before and after reinforcment by comparing between them. There was an increase in resistance of Yong modulus (E), Impact Strength (I.S), Brinell hardness (B.H) and compression Strength (C.S). Also, the effect of some acids were studied such as (HCl, H2
Objective: The approximate life span of a silicone maxillofacial prosthesis is as short as1.5–2 years of clinical service, then a new prosthesis should be fabricated. The most common reasonfor re-making the prosthesis is silicone mechanical properties degradation. The aim of this studywas to assess some mechanical properties of VST-30 silicone for maxillofacial prostheses after addi-tion of intrinsic pigments.Methods: Two types of intrinsic pigments (rayon flocking and burnt sienna); each of them wasincorporated into silicone. One hundred and twenty samples were prepared and split into 4 groupsaccording to the conducted tests (tear strength, hardness, surface roughness, and tensile strengthand elongation percentage) with 30 samples for ea
... Show MoreDesigning machines and equipment for post-harvest operations of agricultural products requires information about their physical properties. The aim of the work was to evaluate the possibility of introducing a new approach to predict the moisture content in bean and corn seeds based on measuring their dimensions using image analysis using artificial neural networks (ANN). Experimental tests were carried out at three levels of wet basis moisture content of seeds: 9, 13 and 17%. The analysis of the results showed a direct relationship between the wet basis moisture content and the main dimensions of the seeds. Based on the statistical analysis of the seed material, it was shown that the characteristics
This work aims to enhance acoustic and thermal insulation properties for polymeric composite by adding nanoclay and rock wool as reinforcement materials with different rations. A polymer blend of (epoxy+ polyester) as matrix materials was used. The Hand lay-up technique was used to manufacture the castings. Epoxy and polyester were mixed at different weight ratios involving (50:50, 60:40, 70:30, 80:20, and 90:10) wt. % of (epoxy: polyester) wt. % respectively. Impact tests for optimum sample (OMR), caustic and thermal insulation tests were performed. Nano clay (Kaolinite) with ratios ( 5 and 7.5% ) wt.% , also hybrid reinforcement materials involving (Kaolite 5 & 7.5 % wt.% + 10% volume fraction of rockwool ) were added as reinforcem
... Show MoreMagnetic nanoparticles (MNPs) of iron oxide (Fe3O4) represent the most promising materials in many applications. MNPs have been synthesized by co-precipitation of ferric and ferrous ions in alkaline solution. Two methods of synthesis were conducted with different parameters, such as temperature (25 and 80 ̊C), adding a base to the reactants and the opposite process, and using nitrogen as an inert gas. The product of the first method (MNPs-1) and the second method (MNPs-2) were characterized by x-ray diffractometer (XRD), Zeta Potential, atomic force microscope (AFM) and scanning electron microscope (SEM). AFM results showed convergent particle size of (MNPs-1) and (MNPs-2) with (86.01) and (74.14)
... Show MoreAbstract: Colloidal gold nanoparticles (ringworm Palm or in the form of paper willow) have been prepared from HAuCl4 containing aqueous solution by hot chemical reduction method. The colloidal gold nanoparticles were characterized by SEM, EDX, and UV-VIS absorption spectroscopy. It was found that the variation of reduction time from boiling point affects the size of the nanoparticles and also in chemical reduction approach the size of nanoparticles can be controlled by varying the amount of variation the volume of reductant material with respect to the volume of HAuCL4.
A new simple and sensitive spectrophotometric method for the determination of trace amount of Cu(II) in the ethanol solution have been developed. The method is based on the complexation of Cu(II) with ethyl cyano(2-methyl carboxylate phenyl azo acetate) (ECA) in basic medium of sodium hydroxide givining maximum absorbance at (λmax = 521 nm). Beer's law is obeyed over the concentration range (5-50) (μg / ml) with molar absorptivity of (3.1773 × 102 L mol-1 cm-1) and correlation coefficient (0.9989). The optimum conditions for the determination of Cu(II)-complex and have been studied and applied to determine Cu(II) in synthetic water sample using simple and standard addition methods.
Zinc oxide thin films were deposited by chemical spray pyrolysis onto glass substrates which are held at a temperature of 673 K. Some structural, electrical, optical and gas sensing properties of films were studied. The resistance of ZnO thin film exhibits a change of magnitude as the ambient gas is cycled from air to oxygen and nitrogen dioxide
In this paper, ferric oxide nanoparticles) Fe2O3 NPs( were synthesized directly on a quartz substrate in vacuum by pulse laser deposition technique using Nd:YAG laser at different energies (171, 201,363 mJ/pulse). The slides were then heated to 700o C for 1 hour. The structural, optical, morphological, and electrical properties were studied. The optical properties indicated that the prepared thin films have an energy gap ranging from 2.28 to 2.04 eV. The XRD results showed no lattice impurities for other iron oxide phases, confirming that all particles were transformed into the α-Fe2O3 phase during the heating process. The AFM results indicated the dependence of nanoparticles size o
... Show More