This study focuses on the impact of technology on creating a dystopian world as presented by the English playwright Caryl Churchill in her play A Number (2002). This dramatic work came as a reaction to the most crucial and valuable turning point in the scientific achievements of human engineering, namely, the cloning of the sheep called Dolly. Therefore, A Number is a play that presents an analytical stage for imagining the biotechnological and scientific future. This dramatic vignette captures the playwright’s fears towards the abnormal progress of technology and science and how far such technological progress affects human relationships and identity. It also portrays how technological progress results in the feeling of a lack of ‘uniqueness’ and potential psychological problems. It shows that biotechnological attempts at human cloning are the heights of science irresponsibility. Human beings desire to have children, but there are limits to this desire. It should not include whatever kind of technology is available to meet such desires. The playwright, through her dramatic characters Salter, B1, B2 and Michael Black, draws a ‘near’ futuristic world in which the misuse of technology raises ethical, scientific, medical and legal
This work is concerned with a two stages four beds adsorption chiller utilizing activated carbon-methanol adsorption pair that operates on six separated processes. The four beds that act as thermal compressors are powered by a low grade thermal energy in the form of hot water at a temperature range of 65 to 83 °C. As well as, the water pumps and control cycle consume insignificant electrical power. This adsorption chiller consists of three water cycles. The first water cycle is the driven hot water cycle. The second cycle is the cold water cycle to cool the carbon, which adsorbs the methanol. Finally, the chilled water cycle that is used to overcome the building load. The theoretical results showed that average cycle cooling power
... Show MoreElectrical resistivity tomography (ERT) methods have been increasingly used in various shallow depth archaeological prospections in the last few decades. These non‐invasive techniques can save time, costs, and efforts in archaeological prospection and yield detailed images of subsurface anomalies. We present the results of quasi‐three‐dimensional (3D) ERT measurements in an area of a presumed Roman construction, using a dense electrode network of parallel and orthogonal profiles in dipole–dipole configuration. A roll‐along technique has been utilized to cover a large part of the archaeological site with a 25 cm electrode and profile spacing, respectively. We have designed a new field proce
The present study introduces description of a new species of genus Arboridia Zakhvaticin 1946, based on a large collection of Cicadellids. External morphological characters particularly male genitalia were discussed and illustrated. The genus Arboridia Zalchvatkiia (Typhlocybinae: Erythroneurini) contains small slender, fragil and attractively coloured and patterned leafhoppers. It was erected by Zakhvatkin in 1946 (Zalchvatkin, 1946). The overall length of adults ranges from 2.5 to 3.4 mm. Members of this genus can be recognized by inner apical cell of forewing which is long with oblique base; Cu confluent with this base at a point near the middle of the length of inner apical cell; two prominent circular deep brown spots on vertex (Zal
... Show MoreIn this research, a study is introduced on the effect of several environmental factors on the performance of an already constructed quality inspection system, which was designed using a transfer learning approach based on convolutional neural networks. The system comprised two sets of layers, transferred layers set from an already trained model (DenseNet121) and a custom classification layers set. It was designed to discriminate between damaged and undamaged helical gears according to the configuration of the gear regardless to its dimensions, and the model showed good performance discriminating between the two products at ideal conditions of high-resolution images.
So, this study aimed at testing the system performance at poor s
... Show MoreThe spread of novel coronavirus disease (COVID-19) has resulted in chaos around the globe. The infected cases are still increasing, with many countries still showing a trend of growing daily cases. To forecast the trend of active cases, a mathematical model, namely the SIR model was used, to visualize the spread of COVID-19. For this article, the forecast of the spread of the virus in Malaysia has been made, assuming that all Malaysian will eventually be susceptible. With no vaccine and antiviral drug currently developed, the visualization of how the peak of infection (namely flattening the curve) can be reduced to minimize the effect of COVID-19 disease. For Malaysians, let’s ensure to follow the rules and obey the SOP to lower the