One of the principle concepts to understand any hydrocarbon field is the heterogeneity scale; This becomes particularly challenging in supergiant oil fields with medium to low lateral connectivity and carbonate reservoir rocks.
The main objectives of this study is to quantify the value of the heterogeneity for any well in question, and propagate it to the full reservoir. This is a quite useful specifically prior to conducting detailed water flooding or full field development studies and work, in order to be prepared for a proper design and exploitation requirements that fit with the level of heterogeneity of this formation.
This study is dedicated to solving multicollinearity problem for the general linear model by using Ridge regression method. The basic formulation of this method and suggested forms for Ridge parameter is applied to the Gross Domestic Product data in Iraq. This data has normal distribution. The best linear regression model is obtained after solving multicollinearity problem with the suggesting of 10 k value.
In this paper Heun method has been used to find numerical solution for first order nonlinear functional differential equation. Moreover, this method has been modified in order to treat system of nonlinear functional differential equations .two numerical examples are given for conciliated the results of this method.
The current paper focuses on the studying the forms of (even-even) nuclei for the heavy elements with mass numbers in the range from (A=226 - 252) for isotopes. This work will consist of studying deformation parameters which is deduced from the "Reduced Electric Transition Probability" which is in its turn dependent on the first Excited State . The "Intrinsic Electric Quadrupole Moments" (non-spherical charge distribution) were also calculated. In addition to that the Roots Mean Square Radii (Isotope Shift) are accounted for in order to compare them with the theoretical results.
The difference and variation in shapes of nuclei for the selected isotopes were detected using &
... Show More