Hydatidosis is a sickness that affects human and farm animals. This disease is deemed as a public health problem in different regions of the world until nowadays. Surgical overlaps is the best way to treat the disease, while the risk of surgery lies in the possibility of cyst rupture and leakage of protoscolices and the recurrence of infection again, this prompted researchers to use scolicidal agents before surgery such as ethanol, plant extracts, to reduce parasite spread and recurrence of infection, recently researchers have been using nanoparticles as a scolicidal agent, like gold nanoparticles, silver nanoparticles, selenium nanoparticles, and others. This research aims to evaluate the fatal effect of zirconium oxide (ZrO2) nanoparticles to protoscolices of hydatid cysts. The Protoscolices were collected from sheep livers infected with hydatid cyst disease. The protoscolices were treated with different concentrations (250, 500, 1000, 2000, and 4000? g/ml) of ZrO2 NPs. The viability of protoscolices was determined by using an eosin staining method after 15, 30, and 60 min. The results showed that the concentrations of 1000, 2000, and 4000 µg/ml were significantly effective in the killing of protoscolices after 60 min., where the fatality rate of protoscolices was 49.6%, 52.7%, and 53.1% respectively when compared with the control group 38.5%(p< 0.05).
The aim of this study is to investigate the protective effect of Radish (Raphanus sativus) seed alcoholic extract 70% against oxidative stress induced by sodium nitrite NaNO2 Twenty five adult male rabbits were devided into five groups of (five rabbits in each group) and treated daily for 30 days. Group T1: intubated orally 20 mg/kg NaNO2, Group T2: intubated orally 20 mg/kg NaNO2 + 50 mg/kg of alcoholic extract from Raphanus sativus seeds, Group T3: intubated orally 20 mg/kg NaNO2 + 100 mg/kg of alcoholic extract from Raphanus sativus seeds, Group T4: intubated orally 20 mg/kg NaNO2 + 200 mg/kg of alcoholic extract from Raphanus sativus seed as well as Group C: control intubated orally distilled water. In comparison with normal ra
... Show MoreThis study investigates the possibility of removing ciprofloxacin (CIP) using three types of adsorbent based on green-prepared iron nanoparticles (Fe.NPs), copper nanoparticles (Cu. NPS), and silver nanoparticles (Ag. NPS) from synthesized aqueous solution. They were characterized using different analysis methods. According to the characterization findings, each prepared NPs has the shape of a sphere and with ranges in sizes from of 85, 47, and 32 nanometers and a surface area of 2.1913, 1.6562, and 1.2387 m2/g for Fe.NPs, Cu.NPs and Ag.NPs, respectively. The effects of various parameters such as pH, initial CIP concentration, temperature, NPs dosage, and time on CIP removal were investigated through batch experiments. The res
... Show MoreThere is currently a pressing need to create an electro-analytical approach capable of detecting and monitoring genosensors in a highly sensitive, specific, and selective way. In this work, Functionalized Multiwall Carbon Nanotubes, Graphene, Polypyrrole, and gold nanoparticles nanocomposite (f-MWCNTs-GR-PPy-AuNP) were effectively deposited on the surface of the ITO electrode using a drop-casting process to modify it. The structural, morphological, and optical analysis of the modified ITO electrodes was carried out at room temperature using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) images, atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectra. Cyclic voltammetry (CV) and electrochemi
... Show MoreStaphylococcus haemolyticus is one of the most frequently isolated coagulase-negative staphylococci. The ability to form biofilm is considered as one of the most important virulence factors of coagulase negative staphylococci. There is only limited knowledge of the nature of S. haemolyticus biofilms. This study was aimed at evaluating the ability of S. haemolyticus strains to produce biofilm in the presence of copper oxide nanoparticles (CuONPs). The biological synthesis of nanoparticles is an environmentally friendly approach for large-scale production of nanoparticles. Copper oxide nanoparticles were produced in the current study from the S. haemolyticus viable cell filtrate. UV-visible (UV-Vis) spectroscopy, X-ray diffra
... Show MoreThis work deals with the effect of adding aluminum nanoparticles on the mechanical properties, micro-hardness and porosity of memory-shape alloys (Cu-Al-Ni). These alloys have wide applications in various industrial fields such as (high damping compounds and self-lubricating applications). The samples are manufactured using the powder metallurgy method, which involved pressing in only one direction and sintered in a furnace surrounded by an inert gas. Four percentages (0%, 5%, 10%, and 15%) of aluminum nanoparticles were fabricated, which depended on the weight of aluminum powder (13%) in the sample under study. To find out which phase is responsible for the reliability of the formation of this type of alloy and its porosity, X-ray diffr
... Show MoreEndothelin-1 (ET-1) is a potent vasoconstrictor hormone that has been identified as an important factor
responsible for the development of cardiovascular dysfunctions. ET-1 exerts its vasoconstrictor activity
through two pharmacologically distinct receptors, ETA and ETB that are found in vascular smooth muscle
cells (VSMCs) and the vasodilator activity through an ETB receptor located on endothelial cells. This study
aimed to show the impact of 1µM L-arginine (LA), 100µM tetrahydrobiopterin (BH4), and their combined
effect on ET-1 activity in both lead-treated and lead-untreated rat aortic rings. This means, investigating how
endothelial dysfunction reverses the role of nitric oxide precursor and cofa
The present research included synthesis of silver nanoparticle from(1*10-3,1*10-4 and1*10-5) M aqueous AgNO3 solution through the extract of M.parviflora reducing agent. In the process of synthesizing silver nanoparticles we detected a rapid reduction of silver ions leading to the formation of stable crystalline silver nanoparticles in the solution.
A mathematical model constructed to study the combined effects of the concentration and the thermodiffusion on the nanoparticles of a Jeffrey fluid with a magnetic field effect the process of containing waves in a three-dimensional rectangular porous medium canal. Using the HPM to solve the nonlinear and coupled partial differential equations. Numerical results were obtained for temperature distribution, nanoparticles concentration, velocity, pressure rise, pressure gradient, friction force and stream function. Through the graphs, it was found that the velocity of fluid rises with the increase of a mean rate of volume flow and a magnetic parameter, while the velocity goes down with the increasing a Darcy number and lateral walls. Also, t
... Show More