Preferred Language
Articles
/
4IYUuIYBIXToZYALFLOL
Post-Fire Behavior of Non-Prismatic Beams with Multiple Rectangular Openings Monotonically Loaded

The main objective of this paper is to study the behavior of Non-Prismatic Reinforced Concrete (NPRC) beams with and without rectangular openings either when exposed to fire or not. The experimental program involves casting and testing 9 NPRC beams divided into 3 main groups. These groups were categorized according to heating temperature (ambient temperature, 400°C, and 700°C), with each group containing 3 NPRC beams (solid beams and beams with 6 and 8 trapezoidal openings). For beams with similar geometry, increasing the burning temperature results in their deterioration as reflected in their increasing mid-span deflection throughout the fire exposure period and their residual deflection after cooling. Meanwhile, the existing openings situation was compounded. The burned NPRC beams were left to gradually cool down under ambient laboratory conditions, and afterward, they were loaded until failure. The influence of temperature on the residual ultimate load-carrying capacity of each beam was studied by comparing these beams with unburned reference beams. Increasing exposure temperature reduces the ultimate strength of solid NPRC beams exposed to temperatures of 400°C and 700°C by about 5.7% and 10.84% respectively. Meanwhile, NPRC beams with trapezoidal openings showed ultimate strength reductions of 21.13% and 32.8% (for beams with 8 openings) and 28% and 34.4% (for beams with 6 openings) under the same burning conditions. The excessive mid-span deflections for these three types of beams were 2%–30.8%, 1.33%–21.8%, and 1.5%–17.4% under the same burning conditions.

Crossref
Publication Date
Fri Mar 20 2020
Journal Name
Fibers
Influence of Cooling Methods on the Behavior of Reactive Powder Concrete Exposed to Fire Flame Effect

The construction of highly safe and durable buildings that can bear accident damage risks including fire, earthquake, impact, and more, can be considered to be the most important goal in civil engineering technology. An experimental investigation was prepared to study the influence of adding various percentages 0%, 1.0%, and 1.5% of micro steel fiber volume fraction (Vf) to reactive powder concrete (RPC)—whose properties are compressive strength, splitting tensile strength, flexural strength, and absorbed energy—after the exposure to fire flame of various burning temperatures 300, 400, and 500 °C using gradual-, foam-, and sudden-cooling methods. The outcomes of this research proved that the maximum reduction in mechanical prop

... Show More
Scopus (4)
Crossref (4)
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Oct 01 2017
Journal Name
Journal Of Engineering
Strength of Reinforced Concrete Columns with Transverse Openings

The present work is concerned with the investigation of the behavior and ultimate capacity of axially loaded reinforced concrete columns in presence of transverse openings under axial load plus uniaxial bending. The experimental program includes testing of twenty reinforced concrete columns (150 × 150 × 700 mm) under concentric and eccentric load. Parameters considered include opening size, load eccentricity and influence of the direction of load eccentricity with respect to the longitudinal axis of the opening. Experimental results are discussed based on load – lateral mid height deflection curves, load – longitudinal shortening behavior, ultimate load and failure modes. It is found that when the direction of load

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Engineering
Strengthening of GFRP Reinforced Concrete Slabs with Openings

Using fiber-reinforced polymer (FRP) could effectively improve the strength and endurance of reinforced concrete (RC) constructions. This study evaluated the flexural behavior of one-way concrete slabs with openings reinforced with glass fiber-reinforced polymers (GFRP) bars. It strengthened using carbon fiber-reinforced polymer (CFRP) sheets around the openings. The experimental program of this study is adopted by casting and testing four one-way concrete slabs with dimensions of (150*750*2650) mm. These slabs are divided into two groups based on whether they were strengthened or un-strengthened. For each group, two different openings (either one rectangular or two square) measured 250*500 mm and 250*250 mm, respective

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Mon Feb 01 2016
Journal Name
Journal Of Engineering
Torsional Resistance of Reinforced Concrete Girders with Web Openings
In this study, a three dimensional finite element analysis was utilized to study the behavior of reinforced concrete T-
girders with and without web openings under pure torsion by using
ANSYS
APDL
... Show More
View Publication Preview PDF
Publication Date
Wed Jun 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Proposed method to estimate missing values in Non - Parametric multiple regression model

In this paper, we will provide a proposed method to estimate missing values for the Explanatory variables for Non-Parametric Multiple Regression Model and compare it with the Imputation Arithmetic mean Method, The basis of the idea of this method was based on how to employ the causal relationship between the variables in finding an efficient estimate of the missing value, we rely on the use of the Kernel estimate by Nadaraya – Watson Estimator , and on Least Squared Cross Validation (LSCV) to estimate the Bandwidth, and we use the simulation study to compare between the two methods.

 

Crossref
View Publication Preview PDF
Publication Date
Thu Feb 01 2024
Journal Name
Civil Engineering Journal
Effects of GFRP Stirrup Spacing on the Behavior of Doubly GFRP-Reinforced Concrete Beams

This study investigates the impact of varying glass fiber-reinforced polymer (GFRP) stirrup spacing on the performance of doubly GFRP-reinforced concrete beams. The research focuses on assessing the behavior of GFRP-reinforced concrete beams, including load-carrying capacity, cracking, and deformability. It explores the feasibility and effectiveness of GFRP bars as an alternative to traditional steel reinforcement in concrete structures. Six concrete beams with a cross-section of 300 mm (wide) × 250 mm (deep), simply supported on a 2100 mm span, were tested. The beams underwent four-point bending with two concentrated loads applied symmetrically at one-third of the span length, resulting in a shear span (a)-to-depth (h) ratio of 2.

... Show More
Crossref (1)
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Nov 01 2015
Journal Name
Journal Of Engineering
Numerical Simulation of Flow in Rectangular Duct with Different Obstruction Heights

       In this study, a simulation model inside a channel of rectangular section with high of (0.16 m) containing two rectangular obstruction plates were aligned variable heights normal to the direction of flow, use six model of the obstructions height of (0.059, 0.066, 0.073, 0.08 and 0.087 m) were compared with the flow behavior of the same duct without obstructions. To predict the velocity profile, pressure distribution, pressure coefficient and turbulence kinetic energy flow of air, the differential equations which describe the flow were approximated by the finite volumes method for two dimensional, by using commercial software package (FLUENT) with standard of k-ε model two dimensions turbulence flow.

... Show More
View Publication Preview PDF
Publication Date
Sun Nov 01 2020
Journal Name
Civil Engineering Journal
Flexural Behavior of Composite GFRP Pultruded I-Section Beams under Static and Impact Loading

In this study, the effect of glass fiber reinforced polymer (GFRP) section and compressive strength of concrete in composite beams under static and low velocity impact loads was examined. Modeling was performed and the obtained results were compared with the test results and their compatibility was evaluated.‎ Experimental tests of four composite beams were carried out, where two of them are control specimen with 20 MPa compressive strength of concrete deck slab and 50 MPa for other. Bending characteristics were affected by the strength of concrete under impact loading case, as it increased maximum impact force and damping time at a ratio of 59% and reduced the damping ratio by 47% compared to the reference hybrid beam. Under stat

... Show More
Scopus (12)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Sun May 21 2023
Journal Name
Fire
Experimental and Numerical Behavior of Encased Pultruded GFRP Beams under Elevated and Ambient Temperatures

In this research, experimental and numerical studies were carried out to investigate the performance of encased glass-fiber-reinforced polymer (GFRP) beams under fire. The test specimens were divided into two peer groups to be tested under the effect of ambient and elevated temperatures. The first group was statically tested to investigate the monotonic behavior of the specimens. The second group was exposed to fire loading first and then statically tested to explore the residual behavior of the burned specimens. Adding shear connectors and web stiffeners to the GFRP beam was the main parameter in this investigation. Moreover, service loads were applied to the tested beams during the fire. Utilizing shear connectors, web stiffeners,

... Show More
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
View Publication
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Engineering
Parameters Affecting the Strength and Behavior of RC Dapped-End Beams: A Numerical Study

The finite element method has been used in this paper to investigate the behavior of precast reinforced concrete dapped-ends beams (DEBs) numerically. A parametric investigation was performed on an experimental specimen tested by a previous researcher to show the effect of numerous parameters on the strength and behavior of RC dapped-end beams. Reinforcement details and steel arrangement, the influence of concrete compressive strength, the effect of inclined load, and the effect of support settlement on the strength of dapped-ends beams are examples of such parameters. The results revealed that the dapped-end reinforcement arrangement greatly affects the behavior of dapped end beam. The failure load decreases by 25% when

... Show More
Crossref
View Publication Preview PDF