Forward-swept wings were researched and introduced to improve maneuverability, control, and fuel efficiency while reducing drag and they are often used alongside canards, to further enhance their characteristics. In this research, the effects of canard dihedral angles on the wing loading of a forward-swept wing in transonic flow conditions were studied, as the wing loading provides a measure of wing’s efficiency (lift/drag). A generic aircraft model from literatures was selected, simulated, and compared to, using CFD software ANSYS/Fluent where the flow equations were solved to calculate the aerodynamic characteristics. The research was carried at two different Mach numbers, 0.6 and 0.9, for five different canard dihedral angles which traverses from below the wing plane to above it, at various flow angles of attack. It was concluded that as the dihedral angle increased, lift increases for the same angle of attack for Mach 0.6 and 0.9 which increases the efficiency of the wing. The wing span loading occur at 10° dihedral angle for both Mach speeds, while, at 10° anhedral, the lift was minimal due to leading-edge flow separation on the FSW's lower surface. Thus, it is concluded that the canard at positive dihedral angles ensures increased wing span loading efficiency.
The objective of this work is to investigate the performance of a conventional three phase induction motor supplied by unbalanced voltages. An effort to study the motor steady state performance under this disturbance is introduced. Using per phase equivalent circuit analysis with the concept of symmetrical components approach, the steady state performance is theoretically calculated. Also, a model for the induction motor with the MATLAB/Simulink SPS tools has been implemented and steady state results were obtained. Both results are compared and show good correlation as well. The simulation model is introduced to support and enhance electrical engineers with a complete understanding for the steady state performance of a fully loaded induc
... Show MoreIn this research a study of some electrical properties Of (Te) thin films with(S) impurities of(1.2%) were deposited at( Ө=700)by thermal evaporation technique .The thicknesses of deposited films were (1050 , 1225 , 1400 , 1575 nm) on a glass substrates of different dimensions . From X-ray diffraction spectrum, the films are polycrystalline .A study of (I-V) characteristic for thin films, the measurements of electrical conductivity (σ)and electrical resistance(R )vs. temperature( T) are done. Further a measurement of thermoelectric power, see beck coefficient and activation energies ( Ea, Es) were computed
Frequency equations for rectangular plate model with and without the thermoelastic effect for the cases are: all edges are simply supported, all edges are clamped and two opposite edges are clamped others are simply supported. These were obtained through direct method for simply supported ends using Hamilton’s principle with minimizing Ritz method to total energy (strain and kinetic) for the rest of the boundary conditions. The effect of restraining edges on the frequency and mode shape has been considered. Distributions temperatures have been considered as a uniform temperature the effect of developed thermal stresses due to restrictions of ends conditions on vibration characteristics of a plate with different
... Show MoreThe importance of efficient vehicle detection (VD) is increased with the expansion of road networks and the number of vehicles in the Intelligent Transportation Systems (ITS). This paper proposes a system for detecting vehicles at different weather conditions such as sunny, rainy, cloudy and foggy days. The first step to the proposed system implementation is to determine whether the video’s weather condition is normal or abnormal. The Random Forest (RF) weather condition classification was performed in the video while the features were extracted for the first two frames by using the Gray Level Co-occurrence Matrix (GLCM). In this system, the background subtraction was applied by the mixture of Gaussian 2 (MOG 2) then applying a number
... Show MoreIn this paper, an eco-epidemiological model with media coverage effects is established and studied. An -type of disease in predator is considered. All the properties of the solution of the proposed model are discussed. An application to the stability theory was carried out to investigate the local as well as global stability of the system. The persistence conditions of the model are determined. The occurrence of local bifurcation in the model is studied. Further investigation of the global dynamics of the model is achieved through using a numerical simulation.
To evaluate the effects of the thermal analysis and temperature of the atmospheric heat on the optical system. it varying the thermal expansion (positive or Negative Values) of the material and then changes the characteri of the optical system properties such as radius of curvetur of the surfaces, size of the aperture stop ect.
This paper had calculated the accepted ratio of the temperature variable on the optical system during analyzing the effect of thermal analysis on the Radial Energy Distribution for +20C0 and +50C0 •
Human perception involves many cognitive processes, such as memory, attention, and critical thinking. An important cognitive process is memory, which is usually connected with the storing and retrieval of information. Different colors and labeling have diverse physiological effects on humans. Our investigation aimed to determine if a change in color or labeling would have a significant effect on memory span and serial recall. However, our results do not support that coloring and labeling have significant impacts on a subject’s memory.
This paper deals with a mathematical model of a fluid flowing between two parallel plates in a porous medium under the influence of electromagnetic forces (EMF). The continuity, momentum, and energy equations were utilized to describe the flow. These equations were stated in their nondimensional forms and then processed numerically using the method of lines. Dimensionless velocity and temperature profiles were also investigated due to the impacts of assumed parameters in the relevant problem. Moreover, we investigated the effects of Reynolds number , Hartmann number M, magnetic Reynolds number , Prandtl number , Brinkman number , and Bouger number , beside those of new physical quantities (N , ). We solved this system b
... Show MoreAl-Qudis power plant was chosen, as one of the power stations of Baghdad, to investigate the effects of Cadmium that emitted from combustion of crude oil in that power plant on the workers' glutathione serum level. Air samples were taken seasonally during August 2011- July 2012 from four sites at Al- Qudis power plant which are oil treatment unit 1(site 1), oil treatment 2 (site2), pre –chimney 1(site 3) and pre-chimney 2 (site 4), to measure levels of heavy metal (cadmium) under study. Blood samples were collected from the workers to estimate the heavy metal Cadmium. Air cadmium levels during summer (August and September) were varied from 6.26 ± 0.6 μg/m3 at site 1 to 6.89 ± 0.67 μg/m3 at site 3, while in spring (end of March, and
... Show MoreAl-Qudis power plant was chosen, as one of the power stations of Baghdad, to investigate the effects of Cadmium that emitted from combustion of crude oil in that power plant on the workers' glutathione serum level. Air samples were taken seasonally during August 2011- July 2012 from four sites at Al- Qudis power plant which are oil treatment unit 1(site 1), oil treatment 2 (site2), pre –chimney 1(site 3) and pre-chimney 2 (site 4), to measure levels of heavy metal (cadmium) under study. Blood samples were collected from the workers to estimate the heavy metal Cadmium. Air cadmium levels during summer (August and September) were varied from 6.26 ± 0.6 μg/m3 at site 1 to 6.89 ± 0.67 μg/m3 at site 3, while in spring (end of March, and
... Show More