Preferred Language
Articles
/
4BdnM48BVTCNdQwCJ2C-
Programming Exam Questions Classification Based On Bloom’s Taxonomy Using Grammatical Rule

Preview PDF
Quick Preview PDF
Publication Date
Tue Jan 29 2019
Journal Name
Journal Of The College Of Education For Women
Object Filling Using Table Based Boundary Tracking

The feature extraction step plays major role for proper object classification and recognition, this step depends mainly on correct object detection in the given scene, the object detection algorithms may result with some noises that affect the final object shape, a novel approach is introduced in this paper for filling the holes in that object for better object detection and for correct feature extraction, this method is based on the hole definition which is the black pixel surrounded by a connected boundary region, and hence trying to find a connected contour region that surrounds the background pixel using roadmap racing algorithm, the method shows a good results in 2D space objects.
Keywords: object filling, object detection, objec

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Opcion, Año
Publication Date
Wed Jan 01 2020
Journal Name
Journal Of Xi'an University Of Architecture & Technology
The Effect of (Landa) Model on Acquiring Grammatical Concepts Upon His Request to the College of Administration and Economics University of Bagdad

The current research aims to identify the impact of the (Landa) model on acquiring grammatical concepts among students of the College of Administration and Economics, University of Baghdad, and to achieve the research goal, the researcher has set the following hypotheses: There are no statistically significant differences at the level of significance (0.05) between the average degrees Students of the experimental group who studied the Arabic language according to the (Landa) model and the marks of the students of the control group who studied the same subject in the usual way in the post test, there are no statistically significant differences at the level of significance (0.05) in the average differences between the test scores before and

... Show More
Preview PDF
Publication Date
Wed Dec 30 2015
Journal Name
College Of Islamic Sciences
Estimation of the names and verbs of some letters to consider the grammatical industry

Estimation of the names and verbs of some letters to consider the grammatical industry

View Publication Preview PDF
Publication Date
Wed Jan 01 2014
Journal Name
International Journal Of Computer Applications
Enhancing the Delta Training Rule for a Single Layer Feedforward Heteroassociative Memory Neural Network

In this paper, an algorithm is suggested to train a single layer feedforward neural network to function as a heteroassociative memory. This algorithm enhances the ability of the memory to recall the stored patterns when partially described noisy inputs patterns are presented. The algorithm relies on adapting the standard delta rule by introducing new terms, first order term and second order term to it. Results show that the heteroassociative neural network trained with this algorithm perfectly recalls the desired stored pattern when 1.6% and 3.2% special partially described noisy inputs patterns are presented.

Publication Date
Thu Jun 20 2019
Journal Name
Baghdad Science Journal
An Analysis on the Applicability of Meta-Heuristic Searching Techniques for Automated Test Data Generation in Automatic Programming Assessment

Automatic Programming Assessment (APA) has been gaining lots of attention among researchers mainly to support automated grading and marking of students’ programming assignments or exercises systematically. APA is commonly identified as a method that can enhance accuracy, efficiency and consistency as well as providing instant feedback on students’ programming solutions. In achieving APA, test data generation process is very important so as to perform a dynamic testing on students’ assignment. In software testing field, many researches that focus on test data generation have demonstrated the successful of adoption of Meta-Heuristic Search Techniques (MHST) so as to enhance the procedure of deriving adequate test data for efficient t

... Show More
Crossref (2)
Clarivate Crossref
View Publication Preview PDF
Publication Date
Wed Dec 26 2018
Journal Name
Iraqi Journal Of Science
Extraction of Vacant Lands for Baghdad City Using Two Classification Methods of Very High Resolution Satellite Images

The use of remote sensing technologies was gained more attention due to an increasing need to collect data for the environmental changes. Satellite image classification is a relatively recent type of remote sensing uses satellite imagery to indicate many key environment characteristics. This study aims at classifying and extracting vacant lands from high resolution satellite images of Baghdad city by supervised Classification tool in ENVI 5.3 program. The classification accuracy was 15%, which can be regarded as fairly acceptable given the difficulty of differentiating vacant land surfaces from other surfaces such as roof tops of buildings.

View Publication Preview PDF
Publication Date
Fri Dec 01 2023
Journal Name
Al-khwarizmi Engineering Journal
Development of an ANN Model for RGB Color Classification using the Dataset Extracted from a Fabricated Colorimeter

 

Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Classification of Arabic Alphabets Using a Combination of a Convolutional Neural Network and the Morphological Gradient Method

The field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabet

... Show More
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Dec 01 2023
Journal Name
Al-khwarizmi Engineering Journal
Development of an ANN Model for RGB Color Classification using the Dataset Extracted from a Fabricated Colorimeter

Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under de

... Show More
Crossref
Preview PDF