Text categorization refers to the process of grouping text or documents into classes or categories according to their content. Text categorization process consists of three phases which are: preprocessing, feature extraction and classification. In comparison to the English language, just few studies have been done to categorize and classify the Arabic language. For a variety of applications, such as text classification and clustering, Arabic text representation is a difficult task because Arabic language is noted for its richness, diversity, and complicated morphology. This paper presents a comprehensive analysis and a comparison for researchers in the last five years based on the dataset, year, algorithms and the accuracy they got. Deep Learning (DL) and Machine Learning (ML) models were used to enhance text classification for Arabic language. Remarks for future work were concluded.
In recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve
... Show MoreIn this Paper, we proposed two new predictor corrector methods for solving Kepler's equation in hyperbolic case using quadrature formula which plays an important and significant rule in the evaluation of the integrals. The two procedures are developed that, in two or three iterations, solve the hyperbolic orbit equation in a very efficient manner, and to an accuracy that proves to be always better than 10-15. The solution is examined with and with grid size , using the first guesses hyperbolic eccentric anomaly is and , where is the eccentricity and is the hyperbolic mean anomaly.
This paper proposes a new approach, of Clustering Ultrasound images using the Hybrid Filter (CUHF) to determine the gender of the fetus in the early stages. The possible advantage of CUHF, a better result can be achieved when fuzzy c-mean FCM returns incorrect clusters. The proposed approach is conducted in two steps. Firstly, a preprocessing step to decrease the noise presented in ultrasound images by applying the filters: Local Binary Pattern (LBP), median, median and discrete wavelet (DWT),(median, DWT & LBP) and (median & Laplacian) ML. Secondly, implementing Fuzzy C-Mean (FCM) for clustering the resulted images from the first step. Amongst those filters, Median & Laplace has recorded a better accuracy. Our experimental evaluation on re
... Show MoreThe research has been based on two main variables (information and communication technology) and the quality of blended education (physical and electronic), aiming to reveal the relationship between four dimensions (physical devices, software, databases, communication networks) and the elements of education represented by (the teacher, the student, the teaching process, curriculum). The methodology and post-analysis-based research were conducted at the Technical College of Management / Baghdad through polling the opinions of a random sample that included (80) teachers out of (86) and the number of students (276) representing a random sample from all departments of the college (for the morning study) out of (3500) stud
... Show MoreThe present study investigates the implementation of machine learning models on crop data to predict crop yield in Rajasthan state, India. The key objective of the study is to identify which machine learning model performs are better to provide the most accurate predictions. For this purpose, two machine learning models (decision tree and random forest regression) were implemented, and gradient boosting regression was used as an optimization algorithm. The result clarifies that using gradient boosting regression can reduce the yield prediction mean square error to 6%. Additionally, for the present data set, random forest regression performed better than other models. We reported the machine learning model's performance using Mea
... Show MoreThe intelligent buildings provided various incentives to get highly inefficient energy-saving caused by the non-stationary building environments. In the presence of such dynamic excitation with higher levels of nonlinearity and coupling effect of temperature and humidity, the HVAC system transitions from underdamped to overdamped indoor conditions. This led to the promotion of highly inefficient energy use and fluctuating indoor thermal comfort. To address these concerns, this study develops a novel framework based on deep clustering of lagrangian trajectories for multi-task learning (DCLTML) and adding a pre-cooling coil in the air handling unit (AHU) to alleviate a coupling issue. The proposed DCLTML exhibits great overall control and is
... Show MoreData security is an important component of data communication and transmission systems. Its main role is to keep sensitive information safe and integrated from the sender to the receiver. The proposed system aims to secure text messages through two security principles encryption and steganography. The system produced a novel method for encryption using graph theory properties; it formed a graph from a password to generate an encryption key as a weight matrix of that graph and invested the Least Significant Bit (LSB) method for hiding the encrypted message in a colored image within a green component. Practical experiments of (perceptibility, capacity, and robustness) were calculated using similarity measures like PSNR, MSE, and
... Show MoreText documents are unstructured and high dimensional. Effective feature selection is required to select the most important and significant feature from the sparse feature space. Thus, this paper proposed an embedded feature selection technique based on Term Frequency-Inverse Document Frequency (TF-IDF) and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) for unstructured and high dimensional text classificationhis technique has the ability to measure the feature’s importance in a high-dimensional text document. In addition, it aims to increase the efficiency of the feature selection. Hence, obtaining a promising text classification accuracy. TF-IDF act as a filter approach which measures features importance of the te
... Show MoreIn this paper, we investigate some methods to solve one of the multi-criteria machine scheduling problems. The discussed problem is the total completion time and the total earliness jobs To solve this problem, some heuristic methods are proposed which provided good results. The Branch and Bound (BAB) method is applied with new suggested upper and lower bounds to solve the discussed problem, which produced exact results for in a reasonable time.