Text categorization refers to the process of grouping text or documents into classes or categories according to their content. Text categorization process consists of three phases which are: preprocessing, feature extraction and classification. In comparison to the English language, just few studies have been done to categorize and classify the Arabic language. For a variety of applications, such as text classification and clustering, Arabic text representation is a difficult task because Arabic language is noted for its richness, diversity, and complicated morphology. This paper presents a comprehensive analysis and a comparison for researchers in the last five years based on the dataset, year, algorithms and the accuracy they got. Deep Learning (DL) and Machine Learning (ML) models were used to enhance text classification for Arabic language. Remarks for future work were concluded.
A three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an
... Show MoreEstimating an individual's age from a photograph of their face is critical in many applications, including intelligence and defense, border security and human-machine interaction, as well as soft biometric recognition. There has been recent progress in this discipline that focuses on the idea of deep learning. These solutions need the creation and training of deep neural networks for the sole purpose of resolving this issue. In addition, pre-trained deep neural networks are utilized in the research process for the purpose of facial recognition and fine-tuning for accurate outcomes. The purpose of this study was to offer a method for estimating human ages from the frontal view of the face in a manner that is as accurate as possible and takes
... Show MoreMonaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi
... Show MoreTHE PROBLEM OF TRANSLATING METAPHOR IN AN ARTISTIC TEXT (ON THE MATERIAL OF RUSSIAN AND ARABIC LANGUAGES)
Today, the science of artificial intelligence has become one of the most important sciences in creating intelligent computer programs that simulate the human mind. The goal of artificial intelligence in the medical field is to assist doctors and health care workers in diagnosing diseases and clinical treatment, reducing the rate of medical error, and saving lives of citizens. The main and widely used technologies are expert systems, machine learning and big data. In the article, a brief overview of the three mentioned techniques will be provided to make it easier for readers to understand these techniques and their importance.
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreAs a result of the pandemic crisis and the shift to digitization, cyber-attacks are at an all-time high in the modern day despite good technological advancement. The use of wireless sensor networks (WSNs) is an indicator of technical advancement in most industries. For the safe transfer of data, security objectives such as confidentiality, integrity, and availability must be maintained. The security features of WSN are split into node level and network level. For the node level, a proactive strategy using deep learning /machine learning techniques is suggested. The primary benefit of this proactive approach is that it foresees the cyber-attack before it is launched, allowing for damage mitigation. A cryptography algorithm is put
... Show MoreAmputation of the upper limb significantly hinders the ability of patients to perform activities of daily living. To address this challenge, this paper introduces a novel approach that combines non-invasive methods, specifically Electroencephalography (EEG) and Electromyography (EMG) signals, with advanced machine learning techniques to recognize upper limb movements. The objective is to improve the control and functionality of prosthetic upper limbs through effective pattern recognition. The proposed methodology involves the fusion of EMG and EEG signals, which are processed using time-frequency domain feature extraction techniques. This enables the classification of seven distinct hand and wrist movements. The experiments conducte
... Show More