This study is achieved in the local area in Eridu oil field, where the Mishrif Formation is considered the main productive reservoir. The Mishrif Formation was deposited during the Cretaceous period in the secondary sedimentary cycle (Cenomanian-Early Turonian as a part of the Wasia Group a carbonate succession and widespread throughout the Arabian Plate. There are four association facies are identified in Mishrif Formation according the microfacies analysis: FA1-Deep shelf facies association (Outer Ramp); FA2-Slope (Middle Ramp); FA3-Reef facies (Shoal) association (Inner ramp); FA4-Back Reef facies association. Sequence stratigraphic analysis show there are three stratigraphic surfaces based on the abrupt changing in depositional environments, one of them ((Mishrif –Kifl unconformity) are regionally correlated with the other equivalent formations in surrounding countries within the Arabian Plate. And intra- Mishrif two surfaces are maximum flooding surfaces which represents the deepening up-ward association facies. Two major sequences are identified based on the behaviors of facies association within a sequence of stratigraphic boundaries and system tracts. These sequences include sequence I and sequence II.
Chromene is considered a fused pyran ring with a benzene ring, which is found in many plants and is part of many important compounds such as anthocyanidins, anthocyanins, catechins, and flavanones. These compounds are included under the headings "flavonoids" and "isoflavonoids." These compounds are well known as bioactive molecules with wide medicinal uses. According to these pharmacokinetic characteristics, many researchers are giving more attention to this type of compound and its derivatives. Many chromene derivatives have been synthesized to study their biological effects for the treatment of many diseases. Furthermore, the researcher displayed wide interest in finding new methods for synthesizing chromene derivatives. These met
... Show MoreMetal oxide nanoparticles demonstrate uniqueness in various technical applications due to their suitable physiochemical properties. In particular, yttrium oxide nanoparticle(Y2O3NPs) is familiar for technical applications because of its higher dielectric constant and thermal stability. It is widely used as a host material for a variety of rare-earth dopants, biological imaging, and photodynamic therapies. In this investigation, yttrium oxide nanoparticles (Y2O3NPs) was used as an ecofriendly corrosion inhibitor through the use of scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR), UV-Visible spectroscopy, X-ray diffraction (XRD), and energy dispersive X-ray spe
... Show MoreObjectives The strategies of tissue-engineering led to the development of living cell-based therapies to repair lost or damaged tissues, including periodontal ligament and to construct biohybrid implant. This work aimed to isolate human periodontal ligament stem cells (hPDLSCs) and implant them on fabricated polycaprolactone (PCL) for the regeneration of natural periodontal ligament (PDL) tissues. Methods hPDLSCs were harvested from extracted human premolars, cultured, and expanded to obtain PDL cells. A PDL-specific marker (periostin) was detected using an immunofluorescent assay. Electrospinning was applied to fabricate PCL at three concentrations (13%, 16%, and 20% weight/volume) in two forms, which were examined through field emission
... Show MoreTo accommodate utilities in buildings, different sizes of openings are provided in the web of reinforced concrete deep beams, which cause reductions in the beam strength and stiffness. This paper aims to investigate experimentally and numerically the effectiveness of using carbon fiber reinforced polymer (CFRP) strips, as a strengthening technique, to externally strengthen reinforced concrete continuous deep beams (RCCDBs) with large openings. The experimental work included testing three RCCDBs under five-point bending. A reference specimen was prepared without openings to explore the reductions in strength and stiffness after providing large openings. Openings were created symmetrically at the center of spans of the other specimens
... Show MoreA Wearable Robotic Knee (WRK) is a mobile device designed to assist disabled individuals in moving freely in undefined environments without external support. An advanced controller is required to track the output trajectory of a WRK device in order to resolve uncertainties that are caused by modeling errors and external disturbances. During the performance of a task, disturbances are caused by changes in the external load and dynamic work conditions, such as by holding weights while performing the task. The aim of this study is to address these issues and enhance the performance of the output trajectory tracking goal using an adaptive robust controller based on the Radial Basis Function (RBF) Neural Network (NN) system and Hamilton
... Show MoreThis work revealed the spherical aromaticity of some inorganic E4 cages and their protonated E4H+ ions (E=N, P, As, Sb, and Bi). For this purpose, we employed several evaluations like (0D-1D) nucleus independent chemical shift (NICS), multidimensional (2D-3D) off-nucleus isotropic shielding σiso(r), and natural bond orbital (NBO) analysis. The magnetic calculations involved gauge-including atomic orbitals (GIAO) with two density functionals B3LYP and WB97XD, and basis sets of Jorge-ATZP, 6-311+G(d,p), and Lanl2DZp. The Jorge-ATZP basis set showed the best consistency. Our findings disclosed non-classical aromatic characters in the above molecules, which decreased from N to Bi cages. Also, the results showed more aromaticity in E4 than E4H+
... Show More