Bruggeman's symmetric effective-medium model of vanadium oxide is introduced, in which the transmittance was studied because of its importance in the subject of smart windows, it was studied from ( 5 nm-1000 nm) for each of the regions of the electromagnetic spectrum, the ultraviolet and visible region, and the near and medium sub-regions of the infrared and the results showed that the importance of studying the transmittance of vanadium oxide as a good candidate For this kind of industries. Our results showed that the small sizes of the material guarantee an almost constant and high transmittance to the visible region; this is due to the agreement of the direction of the dipoles in the material with the direction of the internal electric field, which leads to an increase in the value of the refractive index. The refractive index represents the gain in the permittivity of the material presented by Bruggeman's model. For the other regions where the transmittance is not desirable, it can be controlled by the film’s size of the transmittance on the one hand and the wavelength on the other hand.
In this paper, analyzing the non-dimensional Magnesium-hydrodynamics problem Using nanoparticles in Jeffrey-Hamel flow (JHF) has been studied. The fundamental equations for this issue are reduced to a three-order ordinary differential equation. The current project investigated the effect of the angles between the plates, Reynolds number, nanoparticles volume fraction parameter, and magnetic number on the velocity distribution by using analytical technique known as a perturbation iteration scheme (PIS). The effect of these parameters is similar in the converging and diverging channels except magnetic number that it is different in the divergent channel. Furthermore, the resulting solutions with good convergence and high accuracy for the d
... Show MoreCoblatcomplex has been prepared by reaction between C16H19N3O3S (L) as ligand and metal salt (II). The prepared complex were characterized by infrared spectra, electromic spectra, magnetic susceptibility, molar conductivity measurement and metal analysis by atomic absorption and (C.H.N) analysis. From these studies tetrahedral geometry structure for the complex was suggested. The photodegredation of complex were study using photoreaction cell and preparednanoTiO2 catalyst in different conditions (concentration, temperatures, pH).The results show that the recation is of a first order with activation energy equal to (6.6512 kJ /mol).
Piroxicam (PIR) is a nonsteroidal anti-inflammatory drug of oxicam category, used in gout, arthritis, as well as other inflammatory conditions (topically and orally). PIR is practically insoluble in water, therefore the aim is prepare and evaluate piroxicam as liquid self-nanoemulsifying drug delivery system to enhance its dispersibility and stability. The Dispersibilty and Stability study have been conducted in Oil, Surfactant and Co-surfactant for choosing the best materials to dissolve piroxicam. The pseudo ternary phase diagrams have been set at 1:1, 2:1, 3:1 as well as 4:1 ratio of surfactants and co-surfactants, also there are 4 formulations were prepared by using various concentrations of transcutol HP, cremophore EL and triacetin
... Show MoreBackground: The PMMA polymer denture base materials are low in thermal and strength properties. The aim of the study was to investigate the change in glass transition temperature, E-Moudulus and coefficient of thermal expansion of acrylic denture base material by addition of Al2O3, TiO2 and SiO2nano-fillers in 5% by weight. Materials and methods: The type of polymerization is free radical bulk polymerization. one hundred twenty (120) specimens were prepared , the specimens were divided into four groups according to the material had been added (one control and three for Al2O3, TiO2 and SiO2nanocomposite) each group was subdivided in to three groups according to the test had been done on it, the degree of transition (Tg) was measured by The d
... Show MoreAbstract: In the present work, the heat transfer of Nano Aluminum Oxide -NAO- has been studied practically to define the appropriate insulation conditions. This study focuses on finding of the amount of heat transfer through a glass substrate that is coated with nanoalumina doped on PMMA matrix. The optical and thermal properties were systematically investigated. The density of heat flow rate, was calculated in the range values (240-260) W/m2 while the optimum values confine between (250-260) W/m2 at temp. (25-35)Co. The results showed that the thermal insulation of the sample was significantly enhanced at temp. (30-50)Co. The simulated net heat transfer through window decreased linearly with incr
... Show MoreThe change in the optical band gap and optical activation energy have been investigated for pure Poly (vinyl alcohol)and Poly (vinyl alcohol) doped with Aluminum sulphate to proper films from their optical absorption spectra. The absorption spectra were measured in the wave range from (200-700) nm at temperature range (25-140) 0C. The optical band gap (Eg) for allowed direct transition decrease with increase the concentration of Aluminum sulphate. The optical activation energy for allowed direct transition band gap was evaluated using Urbach- edges method. It was found that ?E increases with increasing the concentration of Al2 (SO4)3 and decreases when temperature increases.
In this work, InSe thin films were deposited on glass substrates by thermal evaporation technique with a deposit rate of (2.5∓0.2) nm/sec. The thickness of the films was around (300∓10) nm, and the thin films were annealed at (100, 200 and 300)°C. The structural, morphology, and optical properties of Indium selenide thin films were studied using X-ray diffraction, Scanning Electron Microscope and UV–Visible spectrometry respectively. X-ray diffraction analyses showed that the as deposited thin films have amorphous structures. At annealing temperature of 100°C and 200°C, the films show enhanced crystalline nature, but at 300°C the film shows a polycrystalline structure with Rhombohedral phas