An edge dominating set of a graph is said to be an odd (even) sum degree edge dominating set (osded (esded) - set) of G if the sum of the degree of all edges in X is an odd (even) number. The odd (even) sum degree edge domination number is the minimum cardinality taken over all odd (even) sum degree edge dominating sets of G and is defined as zero if no such odd (even) sum degree edge dominating set exists in G. In this paper, the odd (even) sum degree domination concept is extended on the co-dominating set E-T of a graph G, where T is an edge dominating set of G. The corresponding parameters co-odd (even) sum degree edge dominating set, co-odd (even) sum degree edge domination number and co-odd (even) sum degree edge domin
... Show MoreThe purpose of present work is to study the relationship of the deformed shape of the nucleus with the radioactivity of nuclei for (Uranium-238 and Thorium-232) series. To achieve our purposes we have been calculated the quadruple deformation parameter (β2) and the eccentricity (e) and compare the radioactive series with the change of the and (e) as indicator for the changing in the nucleus shape with the radioactivity. To obtain the value of quadruple deformation parameter (β2), the adopted value of quadruple transition probability B (E2; 0+ → 2+) was calculated from Global Best fit equation. While the eccentricity (e) was calculated from the values of the minor and major ellipsoid axis’s (a & b). From the results, it is obvi
... Show MoreThe root-mean square-radius of proton, neutron, matter and charge radii, energy level, inelastic longitudinal form factors, reduced transition probability from the ground state to first-excited 2+ state of even-even isotopes, quadrupole moments, quadrupole deformation parameter, and the occupation numbers for some calcium isotopes for A=42,44,46,48,50 are computed using fp-model space and FPBM interaction. 40Ca nucleus is regarded as the inert core for all isotopes under this model space with valence nucleons are moving throughout the fp-shell model space involving 1f7/2, 2p3/2, 1f5/2, and 2p1/2 orbits. Model space is used to present calculations using FPBM intera
... Show MoreThe aim of this work is to learn the relationship of the stability of (β) emitter isobars with their shape for some isobaric elements with even mass number (A=152 - 162). To reach this goal firstly the most stable isobar have been determined by plotting mass parabola (plotting the binding energy (B.E) as a function of the atomic number (Z)) for each isobaric family. Then three-dimensional representation graphics for each nucleus in these isobaric families have been plotted to illustrate the deformation in the shape of a nucleus. These three-dimensional representation graphics prepared by calculating the values of semi-axis minor (a), major (b) and (c) ellipsoid axis’s. Our results show that the shape of nuclides which is represented the
... Show More