A new ligand containing a dioxime derivatives,(H2L)(1) Namely P-phenylenediamine–N, N'-bis (2-butylidine-3-one oxime) has been prepared by condensation reaction of 2, 3-butanedion mono oxime (2) with 1, 4–diaminobenzene. The titled ligand (H2L) was used to prepare some metal ions complexes namely Co (II), Ni (II) and Cu (II). This ligand and its complexes were confirmed by FT-ir,(UV-Vis.), mass spectroscopy,( 1 H, 13 CNMR) and elemental micro analysis (CHN), molar conductance, element content and melting point measurement. It was concluded that the geometry around Cu (II) and Co (II) complexes were distorted tetrahedral geometry while Ni (II) complex was a square planer.
In the present paper, chitosan Schiff base has been synthesized from chitosan’s reaction with the salicyldehyde. The AuNPs was manufacture by extract of onion peels as a reducing agent. The Au NPs that have been prepared were characterized through the UV-vis spectroscopy, XRD analyses and SEM microscopy. The polymer blends of the chitosan Schiff base / PVP has been prepared through using the approach of solution casting. Chitosan Schiff base / PVP Au nano-composites was prepared. Nano composites and polymer blends have been characterized by FTIR which confirm the formation of Schiff base by revealing a new band of absorption at 1651cm-1 as a result of the (C=N) imine group. SEM, DSC and TGA confirms the thermal stability of
... Show MoreIn the present paper, chitosan Schiff base has been synthesized from chitosan’s reaction with the salicyldehyde. The AuNPs was manufacture by extract of onion peels as a reducing agent. The Au NPs that have been prepared were characterized through the UV-vis spectroscopy, XRD analyses and SEM microscopy. The polymer blends of the chitosan Schiff base / PVP has been prepared through using the approach of solution casting. Chitosan Schiff base / PVP Au nano-composites was prepared. Nano composites and polymer blends have been characterized by FTIR which confirm the formation of Schiff base by revealing a new band of absorption at 1651cm-1 as a result of the (C=N) imine group. SEM, DSC and TGA confirms the thermal stability of the pr
... Show MoreComplexes of Au (III), Pd (II), Pt (IV ) and Rh(III) with S–propynyle-2- thiobenzimidazole (BENZA) have been prepared and characterized by IR and UV- Visible spectral methods in addition to magnetic and conductivity measurements and micro–elemental analysis (CHN).The probable structures of the new complexes have been suggested.
All new compounds synthesized by many reactions starting from a product the compounds [I]a,b from reaction of 3-phenylenediamine or 4-phenylenediamine with chloroacetyl chloride, then the compounds [I]a,b reacted with potassium thiocyanate to yield compounds [II]a,b. While the compounds[III]a,b yield from reacted the compounds [I]a,b with sodium azide then the compounds [III]a,b reacted 1,3-dipolar cycloaddition reaction with acrylic acid to give compounds [IV]a,b and the later compounds reacted with phenylene diamine to product benzimidazole compounds [V]a,b . In addition to synthesized acid chloride compounds [VI]a,b by reacted the compounds [IV]a,b with thionyl chloride .Finally reacted the compounds [VI]a,b with different aromatic amine
... Show MoreChloroacetamide derivatives (2a-g) have been prepared through reaction of chloroacetyl chloride(1) (which prepared by the reaction of chloroacetic acid with thionyl chloride) with primary aromatic amines and sulfa compounds to afford compounds (2a-g) which then reacted with p-hydroxy benzaldehyde via Williamson reaction to obtaine the new compounds 2-(4-formyl phenoxy)-N-aryl acetamide (3a-g). Finally , compounds (3a-g) will be use as a good synthon to prepare the Schiff bases represented by compounds 2-(4-aryliminophenoxy)-N-arylacetamide (4a-g). through , reaction with some primary aromatic amine. All the prepared compounds were investigated by the available physical and spectroscopic methods.
Development of improved methods for the synthesis of metal oxide nanoparticles are of high priority for the advancement of material science and technology. Herein, the biosynthesis of ZnO using hydrahelix of beta vulgaris and the seed of abrus precatorius as an aqueaus extracts adduced respectivily as stablizer and reductant reagent. The support are characterized by spectroscopic methods ( Ft-IR, Uv-vis ).The FTIR confirmed the presence of ZnO band. The Uv-visible showed absorption peak at corresponds to the ZnO nanostructures. X-ray diffraction, scaning electron microscopy (SEM), dispersive X-ray spectroscopy (EDX) techniques are taken to investigation the size, structure and composition of synthesised ZnO nanocrystals. The XRD pattern mat
... Show MoreIn the current study, a direct method was used to create a new series of charge-transfer complexes of chemicals. In a good yield, new charge-transfer complexes were produced when different quinones reacted with acetonitrile as solvent in a 1:1 mole ratio with N-phenyl-3,4-selenadiazo benzophenone imine. By using analysis techniques like UV, IR, and 1H, 13C-NMR, every substance was recognized. The analysis's results matched the chemical structures proposed for the synthesized substances. Functional theory of density (DFT)
has been used to analyze the molecular structure of the produced Charge-Transfer Complexes, and the energy gap, HOMO surfaces, and LUMO surfaces have all been created throughout the geometry optimization process ut
Eleven new 2,6-di-tert-butyl-4-(5-aryl-1,3,4-oxadiazol-2-yl)phenols 5a–k were synthesized by reacting aryl hydrazides with 3,5-di-tert butyl 4-hydroxybenzoic acid in the presence of phosphorus oxychloride. The resulting compounds were characterized based on their IR, 1H-NMR, 13C-NMR, and HRMS data. 2,2-Diphenyl-1-picrylhydrazide (DPPH) and ferric reducing antioxidant power (FRAP) assays were used to test the antioxidant properties of the compounds. Compounds 5f and 5j exhibited significant free-radical scavenging ability in both assays.
Complexes of Au(III) ,Pd (II) , Pt (IV ) and Rh(III) with S – propynyle -2- thiobenzimidazole (BENZA) have been prepared and characterized by IR and UV- Visible spectral methods in addition to magnetic and conductivity measurements and micro – elemental analysis (CHN).The probable structures of the new complexes have been suggested.