This investigation aims to study some properties of lightweight aggregate concrete reinforced by mono or hybrid fibers of different sizes and types. In this research, the considered lightweight aggregate was Light Expanded Clay Aggregate while the adopted fibers included hooked, straight, polypropylene, and glass. Eleven lightweight concrete mixes were considered, These mixes comprised of; one plain concrete mix (without fibers), two reinforced concrete mixtures of mono fiber (hooked or straight fibers), six reinforced concrete mixtures of double hybrid fibers, and two reinforced concrete mixtures of triple hybrid fibers. Hardened concrete properties were investigated in this study. Generally, mono and hybrid fiber specimens showed a significant increase in the splitting tensile strength compared to the plain specimen while they had a slight improvement in compressive strength and modulus of elasticity. The outcomes of the experimental results illustrated that hybrid fibers had the most significant advanced effect on concrete hardened properties. Moreover; the optimization procedure revealed that the best performance in terms of maximum mechanical properties achieved in the mixture reinforced by hybrid fibers[straight + hooked + glass]. The maximum achieved advantage reached (14.18%), (91.97%), and (36.70%) for compressive strength, splitting tensile strength, and modulus of elasticity respectively.
The concrete need curing for cement hydration that is a chemical reaction in each step require water supply throughout the time period. The traditional concrete cured by external method that prevents the concrete surface dry so that keeping the concrete mixture wet and warm. The internal curing was adopted in normal and high strength concrete such as reactive powder concrete. In present paper, experimental approach is to study the mechanical properties of reactive powder concrete cured internally with thermostone material. The materials that adopted to evaluate and find out the influences of the internal curing on the mechanical properties of reactive powder concrete is focused with d
The performance of flexible pavements is significantly impacted by the permanent deformation (rutting) of asphalt pavements. Rutting shortens the pavement's useful service life and poses significant risks to those using the highway since it alters vehicle handling characteristics.. The aim of this research is to evaluate the permanent deformation of asphalt mixtures under different conditions,to achieve this aim 108 cylindrical specimens has been prepared and tested under repeated loading in uniaxial compression mode. Five factors were considered in this research, these factors represent the effect of environmental condition and traffic loading as well as mixture properties, they include testing temperature, loading condition (stress level
... Show MoreThis study was conducted on the effect of the sedimentary source (the sediments coming from both the Iraqi-Iranian borderline and the Tigris river) on the optical and textural features, especially sphericity and roundness of feldspar minerals (potassium and plagioclase types) in soils of the southern part of the alluvial plain. Eight pedons were selected to represent the study area, five of them represented sediments coming from the borderline, which included pedons of (Badra, Taj Al-Din, Al-Shihabi, Jassan, and Galati), while two of them represent the sediments of the Tigris River (Essaouira, Al-Dabouni), the pedon of Ali Al-Gharbi was represented the mixing area of sediments of all the floods coming from the borderline and the sediments o
... Show MoreIn this research , pure Cadmium Oxide thin films were prepared by thermal evaporation Under vacuum method , where pure cadmium metal was deposited on glass Substrate in Room temperature (300K) at thickness (400 ± 30) nm with Deposition rate(1.1 ± 0.1) nm/sec And then we oxidize a pure cadmium Film in Temperature ( 350ºC ) for one hour with existence air flow. This research contained study of the influence of doping process by Tin metal (Sn) with two different ratios (1,3) % at substrate temperature (473K ) on th
... Show MoreTin dioxide doped silver oxide thin films with different x content (0, 0.03, 0.05, 0.07) have been prepared by pulse laser deposition technique (PLD) at room temperatures (RT). The effect of doping concentration on the structural and electrical properties of the films were studied. Atomic Force Measurement (AFM) measurements found that the average value of grain size for all films at RT decrease with increasing of AgO content. While an average roughness values increase with increasing x content. The electrical properties of these films were studied with different x content. The D.C conductivity for all films increases with increasing x content. Also, it found that activation energies decrease with increasing of AgO content for all films.
... Show MoreHigh temperature superconductors with a nominal composition HgBa2Ca2Cu3O8+δ
for different values of pressure (0.2,0.3, 0.5, 0.6, 0.9, 1.0 & 1.1)GPa were prepared by
a solid state reaction method. It has been found that the samples were semiconductor
P=0.2GPa.while the behavior of the other samples are superconductor in the rang
(80-300) K. Also the transition temperature Tc=143K is the maximum at P is equal to
0.5GPa. X-ray diffraction showed a tetragonal structure with the decreasing of the
lattice constant c with the increasing of the pressure. Also we found an increasing of
the density with the pressure.
Blends of Polymethyl methacrylate (PMMA)/polyvinyl alcohol (PVA) doped with 2% weight percentage of Sn were prepared with different blend ratios using casting technique. The measurements of A.C conductivity σa.c within the frequency range (25kHz – 5MHz) of undoped and Sn doped PMMA/PVA blends obeyed the relationship σ= Aws were the value of s within the range 0 > s > 1. The results showed that σa.c increases with the increase of frequency. The exponent s showed preceding increase with the increase of PVA content for PMMA/PVA blends doped with Sn. The dielectric constant, dielectric loss, A.C electrical conductivity are varied with the concentration of PVA in the blend and frequency of applied electrical field.