Preferred Language
Articles
/
44YDroYBIXToZYALhKNE
Torsional Analysis of Multicell Concrete Box Girders Strengthened with CFRP Using a Modified Softened Truss Model
...Show More Authors

Scopus Clarivate Crossref
Publication Date
Wed Jun 04 2025
Journal Name
Engineering, Technology & Applied Science Research
Investigating Fiber Reinforcement Effects on the Performance of Concrete Pavements under Repeated Load
...Show More Authors

Concrete pavements are essential to modern infrastructure, but their low tensile and flexural strengths can cause cracking and shrinkage. This study evaluates fiber reinforcement with steel and carbon fibers in various combinations to improve rigid pavement performance. Six concrete mixes were tested: a control mix with no fiber, a mix with 1% steel fiber (SF1%), a mix with 1% carbon fiber (CF1%), and three hybrid mixes with 1% fiber content: 0.75% steel /0.25% carbon fiber (SF0.75CF0.25), 0.25% steel /0.75% carbon fiber (SF0.25CF0.75), and 0.5% steel /0.5% carbon fiber ((SF0.5CF0.5). Laboratory experiments including compressive, flexural, and splitting tensile strength tests were conducted at 7, 28, and 90 days, while Finite Element Analys

... Show More
View Publication
Scopus Crossref
Publication Date
Wed Jan 20 2021
Journal Name
Earth And Environmental Science
Time Dependent Behavior of Engineered Cementitious Composite Concrete Produced from Portland Limestone Cement
...Show More Authors

Conventional concretes are nearly unbendable, and just 0.1 percent of strain potential makes them incredibly brittle and stiff. This absence of bendability is a significant cause of strain failure and has been a guiding force in the production of an elegant substance, bendable concrete, also known as engineered cement composites, abbreviated as ECC. This type of concrete is capable of displaying dramatically increased flexibility. ECC is reinforced with micromechanical polymer fibers. ECC usually uses a 2 percent volume of small, disconnected fibers. Thus, bendable concrete deforms but without breaking any further than conventional concrete. This research aims to involve this type of concrete, bendable concrete, that will give solut

... Show More
Publication Date
Sat Feb 01 2025
Journal Name
Civil Engineering Journal
On the Impact of Lacing Reinforcement Arrangement on Reinforced Concrete Deep Beams Performance
...Show More Authors

The optimum design is characterized by structural concrete components that can sustain loads well beyond the yielding stage. This is often accomplished by a fulfilled ductility index, which is greatly influenced by the arrangement of the shear reinforcement. The current study investigates the impact of the shear reinforcement arrangement on the structural response of the deep beams using a variety of parameters, including the type of shear reinforcement, the number of lacing bars, and the lacing arrangement pattern. It was found that lacing reinforcement, as opposed to vertical stirrups, enhanced the overall structural response of deep beams, as evidenced by test results showing increases in ultimate loads, yielding, and cracking of

... Show More
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Sat Feb 01 2025
Journal Name
Civil Engineering Journal
On the Impact of Lacing Reinforcement Arrangement on Reinforced Concrete Deep Beams Performance
...Show More Authors

The optimum design is characterized by structural concrete components that can sustain loads well beyond the yielding stage. This is often accomplished by a fulfilled ductility index, which is greatly influenced by the arrangement of the shear reinforcement. The current study investigates the impact of the shear reinforcement arrangement on the structural response of the deep beams using a variety of parameters, including the type of shear reinforcement, the number of lacing bars, and the lacing arrangement pattern. It was found that lacing reinforcement, as opposed to vertical stirrups, enhanced the overall structural response of deep beams, as evidenced by test results showing increases in ultimate loads, yielding, and cracking of

... Show More
View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
Time Dependent Behavior of Engineered Cementitious Composite Concrete Produced from Portland Limestone Cement
...Show More Authors

View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Tue Jan 19 2021
Journal Name
Sn Applied Sciences
Post-fire serviceability and residual strength of composite post-tensioned concrete T-beams
...Show More Authors
Abstract<p>In this study, the response of ten composite post-tensioned concrete beams topped by a reinforced concrete deck with adequate reinforcing shear connectors is investigated. Depending on the concrete compressive strength of the deck slab (20, 30, and 40 MPa), beams are grouped into three categories. Seven of these beams are exposed to a fire attack of 700 and 800 °C temperature simultaneously with or without the presence of a uniformly distributed sustained static loading. After cooling back to ambient temperature, these composite beams are loaded up to failure, using a force control module, by monotonic static loading in a four-point-bending setup with two symmetrical concentrated loads applied in </p> ... Show More
View Publication Preview PDF
Scopus (8)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Mon Jan 11 2021
Journal Name
Earth And Environmental Science
Impact Resistance of Limestone Cement Self Compacting Concrete Reinforced by Locally Available Grids
...Show More Authors

Impact strength of self-compacted concrete is a field of interest, mostly when the concrete is produced from sustainable materials. This research's main objective is to clarify the ability to use two types of Portland limestone cement (Karasta and Tasluja) in self compacted concrete under impact loading, further to the economic and environmental benefits of the limestone cement. The impact loading was applied by a low-speed test, using the drop ball on concrete. Moreover, the study reveals the resistance of the grids reinforced concrete to impact loading by using polymer grid, and steel grid reinforced concrete slabs. Mixes reinforced by steel mesh had the highest results, indicating that the steel mesh was more robust because it had

... Show More
Publication Date
Fri Feb 21 2025
Journal Name
Applied System Innovation
Utilizing Soft Computing Techniques to Estimate the Axial Permanent Deformation of Asphalt Concrete
...Show More Authors

Rutting is a crucial concern impacting asphalt concrete pavements’ stability and long-term performance, negatively affecting vehicle drivers’ comfort and safety. This research aims to evaluate the permanent deformation of pavement under different traffic and environmental conditions using an Artificial Neural Network (ANN) prediction model. The model was built based on the outcomes of an experimental uniaxial repeated loading test of 306 cylindrical specimens. Twelve independent variables representing the materials’ properties, mix design parameters, loading settings, and environmental conditions were implemented in the model, resulting in a total of 3214 data points. The network accomplished high prediction accuracy with an R

... Show More
View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Structural Behavior of Confined Concrete Filled Aluminum Tubular (CFT) Columns under Concentric Load
...Show More Authors

This paper introduces an experimental study on the behavior of confined concrete filled aluminum tubular (CFT) column to improve strength design, ductility and durability of concrete composite structures under concentrically loaded in compression to failure. To achieve this: seven column specimens with same concrete diameter 100mm and without steel reinforcement have been examined through experimental testing, which are used to study the effects of the thickness of the aluminum tube encased concrete ( thickness : 0mm, 2mm, 3mm, 4mm and 5mm with same length of column 450mm), length of column (thickness 5mm and length of column 700mm) and durability (thickness 5mm and length of column 450mm) on the structural behavior of &

... Show More
View Publication Preview PDF
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Some Properties of Carbon Fiber Reinforced Magnetic Reactive Powder Concrete Containing Nano Silica
...Show More Authors

         This study involves the design of 24 mixtures of fiber reinforced magnetic reactive powder concrete containing nano silica. Tap water was used for 12 of these mixtures, while magnetic water was used for the others. The nano silica (NS) with ratios (1, 1.5, 2, 2.5 and 3) % by weight of cement, were used for all the mixtures. The results have shown that the mixture containing 2.5% NS gives the highest compressive strength at age 7 days. Many different other tests were carried out, the results have shown that the carbon fiber reinforced magnetic reactive powder concrete containing 2.5% NS (CFRMRPCCNS) had higher compressive strength, modulus of rupture, splitting tension, str

... Show More
View Publication Preview PDF