The selection of proper field survey parameters of electrical resistivity can significantly provide efficient results within a reasonable time and cost. Four electrode arrays of 2D Electric Resistivity Imaging (ERI) surveys were applied to characterize and detect subsurface archaeological bodies and to determine the appropriate array type that should be applied in the field survey. This research is to identify the subsurface features of the Borsippa archaeological site, Babylon Governorate, Middle Iraq. Synthetic modeling studies were conducted to determine the proper array and parameters for imaging the shallow subsurface features or targets. The efficiency of many array types has been tested for the detection the buried archaeological artifacts by enhancing the data coverage and sensitivity with minimizing ambiguity, from the observations. The applied arrays are Wenner, Wenner-Schlumberger, Pole-Dipole, and Dipole-Dipole. The simulated synthetic model consists of five shallow artifacts or walls embedded in the proposed silt clayey soil deposits. The models were constructed using the RES2DMOD program, and the Inversion approach was conducted using the RES2DINV program. Data of subsurface resistivity variation were inverted using the robust (i.e., L1-norm) inversion algorithm. The results reflect that the Dipole-Dipole array is recommended for shallow depths investigations, while for greater depths, the Wenner-Schlumberger array is proper to apply. The concluded results were applied in real case studies, to effectively image archaeological bodies, and successfully detecting low resistivity zones at superficial and greater depths. The relatively high resistivity features have been imaged which is probably related to the archaeological features. The results of the investigation provide archaeologists with proper insights for assessing and excavating properly the surveyed part of the Borsippa and any archaeological sites in future work.
Is in this research review of the way minimum absolute deviations values based on linear programming method to estimate the parameters of simple linear regression model and give an overview of this model. We were modeling method deviations of the absolute values proposed using a scale of dispersion and composition of a simple linear regression model based on the proposed measure. Object of the work is to find the capabilities of not affected by abnormal values by using numerical method and at the lowest possible recurrence.
Thermal properties of soils are important in buried structures contact problems. Although laboratory is distinctly advantageous in measuring the thermal conductivity of soil under ideal condition, given the ability to simulate relatively large-scale in place of soil bed, the field thermal conductivity of soil is not yet commonly used in many types of research. The use of only a laboratory experiment to estimate thermal conductivity may be the key reason for overestimation or underestimation it. In this paper, an intensive site investigation including field thermal conductivity tests for six different subsoil strata were performed using a thermal probe method (TLS-100) to systematically understanding the effects of field dry density, water c
... Show MoreThe research discusses the public relations services, registration, and academic advising at Petra University for the years 2013-2014. Using a field study and surveying Petra University students to be informed about the services and to cover the tiny details that have to do with public relations role in the university as a specialized department interested in serving public and gaining their trust in terms of what is legal and possible to build and enhance the university reputation. And gain mutual trust between the university and its publics.
The public relations is consi
Soil wetted pattern from a subsurface drip plays great importance in the design of subsurface drip irrigation (SDI) system for delivering the required water directly to the roots of the plant. An equation to estimate the dimensions of the wetted area in soil are taking into account water uptake by roots is simulated numerically using HYDRUS (2D/3D) software. In this paper, three soil textures namely loamy sand, sandy loam, and loam soil were used with three different types of crops tomato, pepper, and cucumber, respectively, and different values of drip discharge, drip depth, and initial soil moisture content were proposed. The soil wetting patterns were obtained at every thirty minutes for a total time of irrigation equ
... Show MoreThis study aimed to reveal the degree possession of secondary teachers for effective teaching skills from the perspective of the teachers themselves in the Mafraq governorate .To achieve the objective of the study(45) teachers were chosen randomly, also a questionnaire composed of 17 was prepared spread over three skill areas (planning, implementation, evaluation).
After application of the tool on the sample results of the study showed that the degree of ownership ranged between medium and high.
The results showed no differences in the degree of ownership due to the variables of sex in favor of females and variable qualification for the benefit of people with qualified Master higher, while differences are attributed to the experien
In this research work, a simulator with time-domain visualizers and configurable parameters using a continuous time simulation approach with Matlab R2019a is presented for modeling and investigating the performance of optical fiber and free-space quantum channels as a part of a generic quantum key distribution system simulator. The modeled optical fiber quantum channel is characterized with a maximum allowable distance of 150 km with 0.2 dB/km at =1550nm. While, at =900nm and =830nm the attenuation values are 2 dB/km and 3 dB/km respectively. The modeled free space quantum channel is characterized at 0.1 dB/km at =860 nm with maximum allowable distance of 150 km also. The simulator was investigated in terms of the execution of the BB84 p
... Show MoreIn this research work, a simulator with time-domain visualizers and configurable parameters using a continuous time simulation approach with Matlab R2019a is presented for modeling and investigating the performance of optical fiber and free-space quantum channels as a part of a generic quantum key distribution system simulator. The modeled optical fiber quantum channel is characterized with a maximum allowable distance of 150 km with 0.2 dB/km at =1550nm. While, at =900nm and =830nm the attenuation values are 2 dB/km and 3 dB/km respectively. The modeled free space quantum channel is characterized at 0.1 dB/km at =860 nm with maximum allowable distance of 150 km also. The simulator was investigated in terms of the execution of the BB84 prot
... Show MoreThe study of traffic on the roads the governorate of Karbala, Where is the study of traffic on the roads measure is necessary to determine the extent of the road and highlighting the importance of its role in the transfer of individuals from original to destination as well as the importance of the region that attracted its movement. This research aims to analyze the traffic in the governorate of Karbala through the study and analysis of surveys of traffic that were made in the governorate. Based on this analysis, it has been reached to identify volumes of the traffic and its density and how the roads are efficient and accommodating these volumes, the results of the traffic survey of the studied roads in the area of the study have shown t
... Show MoreThis research studyies the effect of MgO and ZrO2 as additives in sintering Al2O3 . The experimental results are modeled using ( L2 _ regression) technique , sintered density and grain size rate measurments were accounted by utilizing experimental results of undoped , MgO doped and ZrO2 doped alumina impregrated with spherical large pores in final stage of sintering . The effect of each additive is inhibitian of the grain growth and increasing the densification rate which enhances the kinietics of densification and the removal of large and small pores.