The major mortality factor for women globally is breast cancer, and current treatments have several adverse effects. Hesperetin (HSP) is a flavone that occurs naturally with anti-tumor capabilities and has been investigated as a potential treatment for cancer. This study aimed to investigate the cytotoxic and anti-malignant potential of HSP on breast cancer cells (BT-474) and normal cells (MCF-10a). The results indicated that HSP has dose-dependent cytotoxicity in BT-474 and MCF-10a cells. The elevated concentration of HSP lowered cell viability and proliferation. The half-maximal inhibitory concentration (IC50) of HSP in BT-474 cancer cells after a 48-h exposure was 279.2 μM/ml, while the IC50 in normal cells was 855.4 μM/ml. The cytotoxicity of HSP was more significant in cancer cell lines than in normal cell lines and this aspect presents a favorable factor in utilizing the drug for the treatment of breast cancer. The apoptotic effect of HSP in BT-474 cells was investigated, and it was found that the higher the concentration of HSP more the cells underwent apoptosis. Furthermore, the highest concentration of HSP led to overexpression of the MLH1 and MSH2 genes in both breast cancer and normal cell lines. Overall, our study suggests that HSP has an anticancer effect on breast cancer cell lines, and the effect is concentration dependent.
Identifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration
... Show MoreBackground Cold atmospheric plasma (CAP) is widely used in the cancer therapy field. This type of plasma is very close to room temperature. This paper illustrates the effects of CAP on breast cancer tissues both in vivo and in vitro. Methods The mouse mammary adenocarcinoma cell line AN3 was used for the in vivo study, and the MCF7, AMJ13, AMN3, and HBL cell lines were used for the in vitro study. A floating electrode-dielectric barrier discharge (FE-DBD) system was used. The cold plasma produced by the device was tested against breast cancer cells. Results The induced cytotoxicity percentages were 61.7%, 68% and 58.07% for the MCF7, AMN3, and AMJ13 cell lines, respectively, whereas the normal breast tissue HBL cell line exhibited very li
... Show MoreThe primitive streak and notochord and previously the anterior marginal crescent (AMC), anterior visceral endoderm (AVE) and the anterior hypoblast (AHB) are embryonic entities which identify main body axes and thus establish body plan in the early stages of embryonic development. All of the anterior pre-gastrulation differentiation structures are addressed terminology as anterior pre-gastrulation differentiation (APD). These structures are defined morphologically and are called in mouse (AVE), in rabbit (AMC) and in the pig (AHB). The anterior hypoblast cells of APD are higher and denser than at the opposite pole of the embryo. Moreover, the APD stretches variously between species and has different shapes in the mammalian embryos, for exam
... Show MoreThe last few years witnessed great and increasing use in the field of medical image analysis. These tools helped the Radiologists and Doctors to consult while making a particular diagnosis. In this study, we used the relationship between statistical measurements, computer vision, and medical images, along with a logistic regression model to extract breast cancer imaging features. These features were used to tell the difference between the shape of a mass (Fibroid vs. Fatty) by looking at the regions of interest (ROI) of the mass. The final fit of the logistic regression model showed that the most important variables that clearly affect breast cancer shape images are Skewness, Kurtosis, Center of mass, and Angle, with an AUCROC of
... Show MoreThe present study aimed to examine the concordance between FISH/CISH techniques for assessment of amplification of her2neu gene in Iraqi breast carcinoma patients. Seventy four (74) Iraqi breast cancer patients were involved at the study from the Histopathology Department at the Central Public Health Laboratory in Bagdad, Iraq. Amplification of HER2neu was detected in (33.8%) by fluorescence in situ hybridization and (13.51%) showed high amplification by chromogenic in situ hybridization and (32.43%) showed low amplification. The results of chromogenic in situ hybridization were significantly correlated with the results of two-color fluorescence in situ hybridization with the same tumors. In addition, the study involved the correlation betw
... Show More<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver ope
... Show MoreThis study has been carried out to evaluate the expression level of beta 2 microglobulin gene on patients infected by hepatitis C virus before and after treatment with interferon. The study included 117 hepatitis C patients comprising as 63 pre-treated patients, the range of age was between 20-65 year with a mean age of 48.12 ± 16.1 and 54 post-treated patients with age range was between 23-63 year with the mean of 46.1 ± 18.1. Also it was found that more than half of patients were located within third and fourth decade i.e. 30-49 year, with a percentage of 52.4% and 55.6 % for pre-treatment and post-treatment patients respectively. Moreover , regarding both groups, males are more than females with the ratio of ( 3.2:1) among p
... Show More