All new compounds synthesized by many reactions starting from a product the compounds [I]a,b from reaction of 3-phenylenediamine or 4-phenylenediamine with chloroacetyl chloride, then the compounds [I]a,b reacted with potassium thiocyanate to yield compounds [II]a,b. While the compounds[III]a,b yield from reacted the compounds [I]a,b with sodium azide then the compounds [III]a,b reacted 1,3-dipolar cycloaddition reaction with acrylic acid to give compounds [IV]a,b and the later compounds reacted with phenylene diamine to product benzimidazole compounds [V]a,b . In addition to synthesized acid chloride compounds [VI]a,b by reacted the compounds [IV]a,b with thionyl chloride .Finally reacted the compounds [VI]a,b with different aromatic amine
... Show MoreThis research, involved synthesis of some new 1,2,3-triazoline and 1,2,3,4- tetrazole derivatives from antharanilic acid as starting material .The first step includes formation of 2-Mercapto-3-phenyl-4(3H)Quinazolinone (0) through reacted of anthranilic acid with phenylisothiocyanate in ethanol, then compound (0) reaction with chloro acetyl chloride in dimethyl foramamide (DMF) to prepare intermediate S-(α-chloroaceto-2-yl)-3-phenylquinazolin-4(3H)-one (1); compound (1) reacted with sodium azide to yield S-(α-azidoaceto-2-yl)-3-phenylquinazolin-4(3H)-one (2), while Schiff bases (3-10) were prepared from condensation of substituted primary aromatic amines with different aromatic aldehydes in absolute ethanol as a solvent. Compound (2)
... Show MoreThis research, involved synthesis of some new 1,2,3-triazoline and 1,2,3,4-tetrazole derivatives from antharanilic acid as starting material .The first step includes formation of 2-Mercapto-3-phenyl-4(3H)Quinazolinone (0) through reacted of anthranilic acid with phenylisothiocyanate in ethanol, then compound (0) reaction with chloro acetyl chloride in dimethyl foramamide (DMF) to prepare intermediate S-(α-chloroaceto-2-yl)-3-phenylquinazolin-4(3H)-one (1); compound (1) reacted with sodium azide to yield S-(α-azidoaceto-2-yl)-3-phenylquinazolin-4(3H)-one (2), while Schiff bases (3-10) were prepared from condensation of substituted primary aromatic amines with different aromatic aldehydes in absolute ethanol as a solvent. Compound (2) re
... Show MoreThe present work includes the preparation and characterization of{Co(II) , Ni(II), Pd(II), Fe(III) , Ru(III),Rh(III), Os(III) , Ir(III) , Pt(IV) and VO(IV)}complexes of a new ligand 4-[(1-phenyl-2,3-dimethyl-3-pyrozoline-5-one)azo]-N,N-dimethylanline (PAD). The product (PAD) was isolated,studies and characterized by phsical measurements,i.e., (FT-IR), (UV) Spectroscopy and elemental analysis(C.H.N). The prepared complexes were identified and their structural geometric were suggested in solid state by using flame atomic absorption, elemental analysis(C.H.N), (FT-IR) and (UV-Vis) Spectroscopy, as well as magnetic susceptibility and conductivity measurements . The study of the nature of the complexes formed in( ethanolic solution) following t
... Show MoreDuring this paper, new Schiff's base derivatives [F1-F5] were prepared through the reaction of dapsone drug with different substituted benzaldehyde compounds. Schiff's bases were then converted into 2,3-dihyroquinazolin-4(1H)-one derivatives [F6-F10] through the reaction with 2-amino benzoic acid in ethanol. The synthesized compounds were identified by their physical properties using UV-Vis, FT-IR and 1H-NMR analyses. The liquid crystalline properties of some prepared compounds revealed smectic and nematic phases. Using two separate bacterial species, Pseudomonas aeruginosa (Gram -ve) and Staphylococcus aureus<
... Show MoreA series of new 1,8-naphthalimides linked to azetidinone, thiazolidinone or tetrazole moieties were synthesized. N-ester-1,8-naphthalimide (1) was obtained by direct imidation of 1,8-naphthalic anhydride with ethylglycinate. Compound (1) was treated with hydrazine hydrate in absolute ethanol to give N-acetohydrazide-1,8-naphthalimide (2). The hydrazine derivative (2) was used to obtain new Schiff bases (3-7). Three routes with different reagents were used for the cyclization of the prepared Schiff bases. Fifteen cyclic Schiff bases (8-22) with four- and five-membered rings were obtained.
The structures of the newly synthesized compounds were identified by their FTIR, 1H-NMR, 13C-NMR spectral data and some physical properties. Furtherm
This research includes synthesis of new heterocyclic derivatives of N-benzyl-5-bromoisatin. New 1, 2, 4-triazole, oxazoline and thiazoline derivatives of [N-benzyl-5-bromo-3-(Ethyliminoacetate)-indole-2-one] (2) have been synthesized. The preparation process started by the reaction of 5-bromoisatin with sodium hydride in dimethylformamide (DMF) at 0°C, gave suspension of sodium salt of 5-bromoisatin and subsequent reaction with benzylchloride to give N-benzyl-5-bromoisatin (1). Compound (1) reacted with ethylglycinate (Schiff base) obtained the intermediate compound (2) which reacted with different reagents in two ways. The first way, compound (2) reacted with (hydrazine hydrate, semicarbazide, phenylsemicarbazide and thiosemicarbazide)
... Show MoreA new ligand [4-Methoxy -N-(pyrimidine-2-ylcarbamothioyl) benzamide] (MPB) was synthesized by reactioniofi(4-Methoxyibenzoyliisothiocyanate)withi(2-aminopyri-midine). The Ligand was characterized by elemental micro analysis (C.H.N.S),(FT-IR) (UV- Vis) and (1Hi,13CNMR)spectra. Some transition metals complexes of this ligand were prepared and characterized by (FT-IR, UV-Vis) spectra conductivity measurements magnetic susceptibility and atomic absorption. From the obtained results the molecular formula of all complexes was suggested to be [M(MPB)2Cl2] (M+2i=Cu, Mn, Co ,Ni ,Zn ,Cd and Hg),the proposed geometrical structure for all complexes was an octahedral.
Mn(II), Co(II), Ni(II), Cu(II), and Cr(III) metal complexes with the ligand (L) [3-(2nitro benzylidene) amino-2-thioxoimidazolidin-4-one] have been prepared and characterized in their solid state using the elemental micro analysis (C.H.N.S), flame atomic absorption, UV-Vis spectroscopy, FT-IR, magnetic susceptibility measurements, and electrical molar conductivity. The ratio of metal to ligand [M:L] was got for all complexes in the ethanol by using the molar ratio method, which produced comparable results with those results obtained for the solid complexes. From the data of all techniques, octahedral geometry was proposed for Cr(III), Mn(II), and Co(II) complexes, while tetrahedral structure was proposed for Ni(II), Cu(II) complexes.