Exchange of information through the channels of communication can be unsafe. Communication media are not safe to send sensitive information so it is necessary to provide the protection of information from disclosure to unauthorized persons. This research presented the method to information security is done through information hiding into the cover image using a least significant bit (LSB) technique, where a text file is encrypted using a secret sharing scheme. Then, generating positions to hiding information in a random manner of cover image, which is difficult to predict hiding in the image-by-image analysis or statistical analyzes. Where it provides two levels of information security through encryption of a text file using the secret sharing and the generating random positions of hiding. This method has been in hiding a text file and recovered without loss of information, as well as not noticing any deformation of the image. Where it was hiding a text file size of 20 KB in image cover (250x250) pixels, the result of MSE is 0.696 and PSNR is 49.211.
In this paper, an efficient image segmentation scheme is proposed of boundary based & geometric region features as an alternative way of utilizing statistical base only. The test results vary according to partitioning control parameters values and image details or characteristics, with preserving the segmented image edges.
Recent years have seen an explosion in graph data from a variety of scientific, social and technological fields. From these fields, emotion recognition is an interesting research area because it finds many applications in real life such as in effective social robotics to increase the interactivity of the robot with human, driver safety during driving, pain monitoring during surgery etc. A novel facial emotion recognition based on graph mining has been proposed in this paper to make a paradigm shift in the way of representing the face region, where the face region is represented as a graph of nodes and edges and the gSpan frequent sub-graphs mining algorithm is used to find the frequent sub-structures in the graph database of each emotion. T
... Show MoreHead nurses are vital in understanding and encouraging knowledge sharing among their followers. However, few empirical studies have highlighted their contribution to knowledge-sharing behaviour in Online Health Communities (OHCs). In addition, scant literature has examined the moderating role of knowledge self-efficacy in this regard.
This study examines the moderating role of self-efficacy between the association of four selected individual factors of head nurses (i.e., Trust, Reciprocity, Reputation, and Ability to Share) and their knowledge-sharing behaviour in OHCs in Jordan.
<Methicillin resistant Staphylococcus aureus (MRSA) is one of the principal nosocomial causative agents. This bacterium has the capability to resist wide range of antibiotics and it is responsible for many diseases like skin, nose and wounds infection. In this study, randomly amplified polymorphic DNA (RAPD)-PCR was applied with ten random primers to examine the molecular diversity among methicillin resistant Staphylococcus aureus (MRSA) isolates in the hospitals and to investigate the genetic distance between them. 90 Isolates were collected from clinical specimens from Iraqi hospitals for a total of 90 isolates. Only 10 strains (11.11%) were found to be MRSA. From these 10 primers, only 9 gave clear amplification products. 91 fragment l
... Show MoreABSTRACT
Impkact of Knowledge sharing on organizational innovation Impriscal study in Arabic company .
of Knowledge Management is the main component Knowledge sharing system, it mean the exchange if Knowledge, ideas, and good practice with another individual . Knowledge sharing between persons, then its values can growth .
It is vry important because it can provide us with the contention between virus peoples . the interaction among the people can pass all kind of Knowledge among them. the connection and interaction and interaction enabl
... Show MoreThe huge amount of documents in the internet led to the rapid need of text classification (TC). TC is used to organize these text documents. In this research paper, a new model is based on Extreme Machine learning (EML) is used. The proposed model consists of many phases including: preprocessing, feature extraction, Multiple Linear Regression (MLR) and ELM. The basic idea of the proposed model is built upon the calculation of feature weights by using MLR. These feature weights with the extracted features introduced as an input to the ELM that produced weighted Extreme Learning Machine (WELM). The results showed a great competence of the proposed WELM compared to the ELM.
This research attempted to take advantage of modern techniques in the study of the superstructural phonetic features of spoken text in language using phonetic programs to achieve more accurate and objective results, far from being limited to self-perception and personal judgment, which varies from person to person.
It should be noted that these phonological features (Nabr, waqf, toning) are performance controls that determine the fate of the meaning of the word or sentence, but in the modern era has received little attention and attention, and that little attention to some of them came to study issues related to the composition or style Therefore, we recommend that more attention should be given to the study of
It is not available for us to go back in time and see plays old and it plays giants tragedy ancient Greek (Aeschylus, Sofokls, and yourbedes) through the eyes of a generation ago, and if we were able to go back to Ntegathm play it is certain that we will not taste or Nstassig for much of what we see from these offers will not afford the traditional religious rituals, which was accompanied also dance and music in the style of ancient Greek play was representing a large part of the theater see manifestations Can our eyes and ears we twentieth century audience to accept those appearances, and it was then?
Inevitably it will look like a museum bycollection not only. So we find ourselves in the light of the foregoing forced When you do rem
Building a system to identify individuals through their speech recording can find its application in diverse areas, such as telephone shopping, voice mail and security control. However, building such systems is a tricky task because of the vast range of differences in the human voice. Thus, selecting strong features becomes very crucial for the recognition system. Therefore, a speaker recognition system based on new spin-image descriptors (SISR) is proposed in this paper. In the proposed system, circular windows (spins) are extracted from the frequency domain of the spectrogram image of the sound, and then a run length matrix is built for each spin, to work as a base for feature extraction tasks. Five different descriptors are generated fro
... Show More