In this research, we investigate and evaluate the efficiency of a hetero junction N749- device based on a simple donor-acceptor model for electron transfer. Electron transfer from a photo-excited N749 sensitized into a wide-band gap is the basic charge separation in dye-sensitized solar cells, or "DSSCs". Due to the understanding of the current of the DSSCs functioning mechanism, the energy levels of the hetero junction N749- device surrounded by DCM solvent as polar media must be continuum levels. The current-voltage (J-V) characteristics of the N749- device are calculated in two concentrations at room temperature (T=300 k) and 100 irradiation. The fill factor and efficiency of the device are found to be 0.134 and 6.990 for con
... Show MoreAbstract: The natural dye, Curcumin, was extracted from Curcuma longa using as a sensitizer in two types of dye sensitized solar cell (DSSC), and their characteristics were studied. The absorption spectrum of the dye solutions, as well as the wavelength of the maximum absorbance of the dye loaded TiO2 film has been studied. The X-Ray diffraction pattern of TiO2 film made with Doctor-Blading technique shown that the grain size of TiO2 was equal to be 40 nm. The electrical performances in terms of short circuit current, open circuit voltage and power conversion efficiency of cells were investigated.
The rate of electron transfer from N3 sensitized by dye to TiO2 semiconductor in variety solvent have been calculated as a function of reorientation energy effective free energy , volume of semiconductor , attenuation and lattice constant of semiconductor . A very strong dependence of the electron transfer rate constant on the reorientation and effective free energy .Results of calculation indicate that TiO2 is available to use with N3 dye .Our calculation results show that a good agreement with experimental result