Proxy-based sliding mode control PSMC is an improved version of PID control that combines the features of PID and sliding mode control SMC with continuously dynamic behaviour. However, the stability of the control architecture maybe not well addressed. Consequently, this work is focused on modification of the original version of the proxy-based sliding mode control PSMC by adding an adaptive approximation compensator AAC term for vibration control of an Euler-Bernoulli beam. The role of the AAC term is to compensate for unmodelled dynamics and make the stability proof more easily. The stability of the proposed control algorithm is systematically proved using Lyapunov theory. Multi-modal equation of motion is derived using the Galerkin method. The state variables of the multi-modal equation are expressed in terms of modal amplitudes that should be regulated via the proposed control system. The proposed control structure is implemented on a simply supported beam with two piezo-patches. The simulation experiments are performed using MATLAB/SIMULINK package. The locations of piezo-transducers are optimally placed on the beam. A detailed comparison study is implemented including three scenarios. Scenario 1 includes disturbing the smart beam while no feedback loop is established (open-loop system). In scenario 2, a PD controller is applied on the vibrating beam. Whereas, scenario 3 includes implementation of the PSMC+AAC. For all previously mentioned scenarios, two types of disturbances are applied separately: 1) an impulse force of 1 N peak and 1 s pulse width, and 2) a sinusoidal disturbance with 0.5 N amplitude and 20 Hz frequency. For impulse disturbance signals, the results show the superiority of the PSMC+AAC in comparison with the conventional PD control. Whereas, both the PSMC+ACC and the PD control work well in the case of a sinusoidal disturbance signal and the superiority of the PSMC is not clear.
Computer vision seeks to mimic the human visual system and plays an essential role in artificial intelligence. It is based on different signal reprocessing techniques; therefore, developing efficient techniques becomes essential to achieving fast and reliable processing. Various signal preprocessing operations have been used for computer vision, including smoothing techniques, signal analyzing, resizing, sharpening, and enhancement, to reduce reluctant falsifications, segmentation, and image feature improvement. For example, to reduce the noise in a disturbed signal, smoothing kernels can be effectively used. This is achievedby convolving the distributed signal with smoothing kernels. In addition, orthogonal moments (OMs) are a cruc
... Show MoreThis study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperatur
... Show MoreWith the vast usage of network services, Security became an important issue for all network types. Various techniques emerged to grant network security; among them is Network Intrusion Detection System (NIDS). Many extant NIDSs actively work against various intrusions, but there are still a number of performance issues including high false alarm rates, and numerous undetected attacks. To keep up with these attacks, some of the academic researchers turned towards machine learning (ML) techniques to create software that automatically predict intrusive and abnormal traffic, another approach is to utilize ML algorithms in enhancing Traditional NIDSs which is a more feasible solution since they are widely spread. To upgrade t
... Show MoreToday, the science of artificial intelligence has become one of the most important sciences in creating intelligent computer programs that simulate the human mind. The goal of artificial intelligence in the medical field is to assist doctors and health care workers in diagnosing diseases and clinical treatment, reducing the rate of medical error, and saving lives of citizens. The main and widely used technologies are expert systems, machine learning and big data. In the article, a brief overview of the three mentioned techniques will be provided to make it easier for readers to understand these techniques and their importance.
kinetic studies were carried out the uterine homogenate time course of the association of with LH in benign and malignant uterine
Phenomena of an abnormal genitalia was among some specimens of Cicindela aulica Dej.
Collected from Iraq. The fore tarsi of male were asymmetrical having its basal three segments
dilated and clothed beneath with fine bristles as in normal male. While those of the right leg
were found simple as in normal females. Dissection of the genialia of these specimens
showed that they were of two types of both male and female structures.
The purpose of this study is testing the effect of orgnizational learning in orgnizational Effectivness an applied study in Al-hiqma Jordinan Medecine Company . study sosiety 88 manegers sleect 80 of them .study used SPSS to test the hypothesis.study reachs to significant conculctions
BOOK REVIEW