This paper aims to study the effect of circular Y-shaped fin arrangement to improve the low thermal response rates of a double-tube heat exchanger containing Paraffin phase change material (PCM). ANSYS software is employed to perform the computational fluid dynamic (CFD) simulations of the heat exchanger, including fluid flow, heat transfer, and the phase change process. The optimum state of the fin configuration is derived through sensitivity analysis by evaluating the geometrical parameters of the Y-shaped fin. For the same height of the fins (10 mm), the solidification time is reduced by almost 22%, and the discharging rate is enhanced by almost 26% using Y-shaped fins compared with the straight fins. The results demonstrate that the solidification time is inversely proportional to the fin's length. The heat release rate for the case with the longest fins (stem length of 10 mm) is 39 W, almost 2.8 times higher than that with the fins' stem length of 5 mm. The case with the tributary's angle of 22.5o solidified in 55 min, faster than the other studied angles. Increasing the number of fins significantly affects the solidification time and discharging rate. By increasing the number of fins from 3 to 9, the heat transfer rate improves by 194%. The advantages of circular Y-shaped fins are well known in heat transfer applications and therefore are characterized toward higher performance in this study for the first time during the solidification process.
The smart city concept has attracted high research attention in recent years within diverse application domains, such as crime suspect identification, border security, transportation, aerospace, and so on. Specific focus has been on increased automation using data driven approaches, while leveraging remote sensing and real-time streaming of heterogenous data from various resources, including unmanned aerial vehicles, surveillance cameras, and low-earth-orbit satellites. One of the core challenges in exploitation of such high temporal data streams, specifically videos, is the trade-off between the quality of video streaming and limited transmission bandwidth. An optimal compromise is needed between video quality and subsequently, rec
... Show MoreIn this paper, we investigate some methods to solve one of the multi-criteria machine scheduling problems. The discussed problem is the total completion time and the total earliness jobs To solve this problem, some heuristic methods are proposed which provided good results. The Branch and Bound (BAB) method is applied with new suggested upper and lower bounds to solve the discussed problem, which produced exact results for in a reasonable time.
A specialized irradiation instrument "created instrument" was designed and created from various kinds and sizes of available plastic household-waste materials. In addition, a neutron beam collimator with a lid was designed and implemented. The collimator is with dimensions of 25 cm in height and 10 cm in inner diameter, while the lid dimensions are 11.5 cm height and outer diameter of 9.9 cm to perfectly match the inner diameter of the collimator with the possibility of movement (opening and closing), and also the shielding of the radioactive 241Am/Be neutron source with a recent activity of 37.5 mCi.
To investigate the efficiency of the "created instrument", ten hydrogenous material samples (ordinary p
... Show MoreDue to rapid urbanization and industrialization that occurred in Al- Muthanna province in southeastern Iraq during the last decade, pollutants such as heavy metals were emitted into the environment and became a serious threat to human health. Environmental pollution could be caused by different types of pollutants, which come from different sources.
This study aims to assess the environmental magnetism efficiency for heavy metal pollution assessment using the magnetic susceptibility technique which became a more rapid and cost-effective compared to conventional methods. Increasing heavy metal contents in soils causes an increase in the magnetic mineral concentration. The study are
... Show MoreRecently, increasing material prices coupled with more acute environmental awareness and the implementation of regulation has driven a strong movement toward the adoption of sustainable construction technology. In the pavement industry, using low temperature asphalt mixes and recycled concrete aggregate are viewed as effective engineering solutions to address the challenges posed by climate change and sustainable development. However, to date, no research has investigated these two factors simultaneously for pavement material. This paper reports on initial work which attempts to address this shortcoming. At first, a novel treatment method is used to improve the quality of recycled concrete coarse aggregates. Thereafter, the treated recycled
... Show MoreIn this paper, a single link flexible joint robot is used to evaluate a tracking trajectory control and vibration reduction by a super-twisting integral sliding mode (ST-ISMC). Normally, the system with joint flexibility has inevitably some uncertainties and external disturbances. In conventional sliding mode control, the robustness property is not guaranteed during the reaching phase. This disadvantage is addressed by applying ISMC that eliminates a reaching phase to ensure the robustness from the beginning of a process. To design this controller, the linear quadratic regulator (LQR) controller is first designed as the nominal control to decide a desired performance for both tracking and vibration responses. Subsequently, discontinuous con
... Show More—This paper studies the control motion of a single link flexible joint robot by using a hierarchical non-singular terminal sliding mode controller (HNTSMC). In comparison to the conventional sliding mode controller (CSMC), the proposed algorithm (NTSMC) not only can conserve characteristics of the convention CSMC, such as easy implementation, guaranteed stability and good robustness against system uncertainties and external disturbances, but also can ensure a faster convergence rate of the systems states to zero in a finite time and singularity free. The flexible joint robot (FJR) is a two degree of freedom (2DOF) nonlinear and underactuated system. The system here is modeled as a fourth order system by using Lagrangian method. Based on t
... Show MoreIn Iraq, because of the dramatic turnovers facing the country for three decades, pharmacists continue to experience significant professional challenges in both the public and private sectors. The present study aimed to explore the professional challenges and obstacles facing Iraqi pharmacists working in public hospitals. This qualitative study included face-to-face semi-structured interviews with open-ended questions with hospital pharmacists. The participants were selected purposefully (with ≥ 3 years of experience) to work at governmental hospitals in Karbala province between December 2022 and April 2023. The audio-recording interviews were scripted. Thematic analyses were used to generate themes and subthemes from the interview
... Show More