In the present paper, three reliable iterative methods are given and implemented to solve the 1D, 2D and 3D Fisher’s equation. Daftardar-Jafari method (DJM), Temimi-Ansari method (TAM) and Banach contraction method (BCM) are applied to get the exact and numerical solutions for Fisher's equations. The reliable iterative methods are characterized by many advantages, such as being free of derivatives, overcoming the difficulty arising when calculating the Adomian polynomial boundaries to deal with nonlinear terms in the Adomian decomposition method (ADM), does not request to calculate Lagrange multiplier as in the Variational iteration method (VIM) and there is no need to create a homotopy like in the Homotopy perturbation method (HPM), or any assumptions to deal with the nonlinear term. The obtained solutions are in recursive sequence forms which can be used to achieve the closed or approximate form of the solutions. Also, the fixed point theorem was presented to assess the convergence of the proposed methods. Several examples of 1D, 2D and 3D problems are solved either analytically or numerically, where the efficiency of the numerical solution has been verified by evaluating the absolute error and the maximum error remainder to show the accuracy and efficiency of the proposed methods. The results reveal that the proposed iterative methods are effective, reliable, time saver and applicable for solving the problems and can be proposed to solve other nonlinear problems. All the iterative process in this work implemented in MATHEMATICA®12. ABSTRAK: Kajian ini berkenaan tiga kaedah berulang boleh percaya diberikan dan dilaksanakan bagi menyelesaikan 1D, 2D dan 3D persamaan Fisher. Kaedah Daftardar-Jafari (DJM), kaedah Temimi-Ansari (TAM) dan kaedah pengecutan Banach (BCM) digunakan bagi mendapatkan penyelesaian numerik dan tepat bagi persamaan Fisher. Kaedah berulang boleh percaya di kategorikan dengan pelbagai faedah, seperti bebas daripada terbitan, mengatasi masalah-masalah yang timbul apabila sempadan polinomial bagi mengurus kata tak linear dalam kaedah penguraian Adomian (ADM), tidak memerlukan kiraan pekali Lagrange sebagai kaedah berulang Variasi (VIM) dan tidak perlu bagi membuat homotopi sebagaimana dalam kaedah gangguan Homotopi (HPM), atau mana-mana anggapan bagi mengurus kata tak linear. Penyelesaian yang didapati dalam bentuk urutan berulang di mana ianya boleh digunakan bagi mencapai penyelesaian tepat atau hampiran. Juga, teorem titik tetap dibentangkan bagi menaksir kaedah bentuk hampiran. Pelbagai contoh seperti masalah 1D, 2D dan 3D diselesaikan samada secara analitik atau numerik, di mana kecekapan penyelesaian numerik telah ditentu sahkan dengan menilai ralat mutlak dan baki ralat maksimum (MER) bagi menentukan ketepatan dan kecekapan kaedah yang dicadangkan. Dapatan kajian menunjukkan kaedah berulang yang dicadangkan adalah berkesan, boleh percaya, jimat masa dan boleh guna bagi menyelesaikan masalah dan boleh dicadangkan menyelesaikan masalah tak linear lain. Semua proses berulang dalam kerja ini menggunakan MATHEMATICA®12.
توصيف الاساليب الارهابية وسبل مواجهتها
Phthalimide formation of Phthalic anhydride with various amines using microwave or without a method with the difference of the catalyst used in a prepared Phthalimide, either structure general are C6H4CONRCO and used as starting materials in synthesis several compounds derivative phthalimides are an important compounds because spectrum wide biological activities including Antimicrobial activity, anticonvulsant activity, Anti-inflammatory activity,Analgesic activity, Anti- influenza activity and Thromboxane inhibitory activity
Abstract:
We can notice cluster data in social, health and behavioral sciences, so this type of data have a link between its observations and we can express these clusters through the relationship between measurements on units within the same group.
In this research, I estimate the reliability function of cluster function by using the seemingly unrelate
... Show MoreThis paper deals with the numerical solution of the discrete classical optimal control problem (DCOCP) governing by linear hyperbolic boundary value problem (LHBVP). The method which is used here consists of: the GFEIM " the Galerkin finite element method in space variable with the implicit finite difference method in time variable" to find the solution of the discrete state equation (DSE) and the solution of its corresponding discrete adjoint equation, where a discrete classical control (DCC) is given. The gradient projection method with either the Armijo method (GPARM) or with the optimal method (GPOSM) is used to solve the minimization problem which is obtained from the necessary conditi
... Show MoreBackground: The skull base and the hard palate contain many anatomical features that make them rich in information which are useful in sex differentiation; in addition to that they have the ability to resist the hardest environmental conditions that support them in making sex differentiation. Three dimensional computed tomographic techniques has important role in differentiation between sex since it offers images with very accurate data and details of all anatomical structures with high resolution. This study was made to study sex variations among Iraqi sample by craniometric linear measurements of the hard palate and the skull base using 3D reconstructed Computed Tomographic scan. Materials and methods: This study composed of 100 Iraqi su
... Show MoreA geological model was built for the Sadi reservoir, located at the Halfaya oil field. It is regarded as one of the most significant oilfields in Iraq. The study includes several steps, the most essential of which was importing well logs from six oil wells to the Interactive Petrophysics software for conducting interpretation and analysis to calculate the petrophysical properties such as permeability, porosity, shale volume, water saturation, and NTG and then importing maps and the well tops to the Petrel software to build the 3D-Geological model and to calculate the value of the original oil in place. Three geological surfaces were produced for all Sadi units based on well-top data and the top Sadi structural map. The reservoir has
... Show MoreThe aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and collocation method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical examples are given to show the accuracy and reliability of the proposed technique.
Prediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bay
... Show More