Dental implants are considered a unique treatment alternative for the replacement of missing dentition. There is a strive for materials which increase bone formation in bone implant interface and improve osseointegration to offer immediate loading directly after placement with decreased time. The aim of the study was to assess the effect of nano strontium substituted hydroxyapatite and nano fluorapatite mixture coating of screw shaped commercially pure titanium at the bone implant interface by torque removal test and histological assessment in rabbit tibia. Commercially pure titanium was used to prepare 80 screws that were divided into machined surfaces (CpTi), coated with (SrHA), coated with (FA) and coated with mixture 50%SrHA + 50%FA (mixed). The dip coating process was used for producing a homogenous coating layer. Biomechanical and histological assessments were completed after 2 and 6 weeks of implantation. The results revealed that the mean removal torque value for the mixed group were significantly greater when compared with CpTi group, SrHA group, and FA group after 2 and 6 weeks There was more new bone formation around the screws for the mixed group for both healing intervals. Mixing nano strontium substituted hydroxyapatite and nano fluorapatite was more effective in increasing torque mean values, in addition to higher bone formation after 2 and 6 weeks as a result of combined effect of strontium, fluoride in coating.
In this article four samples of HgBa2Ca2Cu2.4Ag0.6O8+δ were prepared and irradiated with different doses of gamma radiation 6, 8 and 10 Mrad. The effects of gamma irradiation on structure of HgBa2Ca2Cu2.4Ag0.6O8+δ samples were characterized using X-ray diffraction. It was concluded that there effect on structure by gamma irradiation. Scherrer, crystallization, and Williamson equations were applied based on the X-ray diffraction diagram and for all gamma doses, to calculate crystal size, strain, and degree of crystallinity. I
... Show More