Preferred Language
Articles
/
3mH9TZkBdMdGkNqjriXA
Numerical Evaluation of Embedded I-Section Strengthening in Axially Loaded Composite Concrete-Filled Stainless Steel Tubes
...Show More Authors

To enhance the structural performance of concrete-filled steel tube (CFST) columns, various strengthening techniques have been proposed, including the use of internal steel stiffeners, external wrapping with carbon fiber-reinforced polymer (CFRP) sheets, and embedded steel elements. However, the behavior of concrete-filled stainless-steel tube (CFSST) columns remains insufficiently explored. This study numerically investigates the axial performance of square CFSST columns internally strengthened with embedded I-section steel profiles under biaxial eccentric loading. Finite element (FE) simulations were conducted using ABAQUS v. 6.2, and the developed models were validated against experimental results from the literature. A comprehensive parametric study was performed to evaluate the effects of several variables, including concrete compressive strength (fcu), stainless-steel yield strength (fy), the depth ratio between the stainless-steel tube and the internal I-section (Dst/Dsi), biaxial eccentricities (ex and ey), and tube thickness (t). The results demonstrated that the axial performance of CFSST columns was most significantly influenced by increasing the Dst/Dsi ratio and load eccentricities. In contrast, increasing the concrete strength and steel yield strength had relatively modest effects. Specifically, the ultimate axial capacity increased by 9.97% when the steel yield strength rose from 550 MPa to 650 MPa and by 33.72% when the tube thickness increased from 3.0 mm to 5.0 mm. A strength gain of only 10.23% was observed when the concrete strength increased from 30 MPa to 60 MPa. Moreover, the energy absorption index of the strengthened columns improved in correlation with the enhanced axial capacities.

Scopus Clarivate Crossref
View Publication
Publication Date
Sat Apr 09 2022
Journal Name
Engineering, Technology & Applied Science Research
Effect of Sustainable Glass Powder on the Properties of Reactive Powder Concrete with Polypropylene Fibers
...Show More Authors

Global warming and environmental damage have become major problems. The production of Portland cement releases large quantities of gas, which cause pollution to the atmosphere. This problem can be solved via the use of sustainable materials, such as glass powder. This study investigates the effect of partial replacement of cement with sustainable glass powder at various percentages (0, 15, 20, and 25%) by weight of cement on some mechanical properties (compressive strength, flexural strength, absorption, and dry density) of Reactive Powder Concrete (RPC) containing a percentage of Polypropylene fibers (PRPC) of 1% by weight. Furthermore, steam curing was performed for 5 hours at 90oC after hardening the sample directly. The RPC was

... Show More
View Publication
Crossref (16)
Crossref
Publication Date
Fri Jun 01 2018
Journal Name
Journal Of Engineering Science And Technology
Effect of cooling mode on serviceability of partially prestressed-concrete beams exposed to fire flame
...Show More Authors

Preview PDF
Scopus
Publication Date
Mon Nov 01 2021
Journal Name
Journal Of Engineering
Study of Using of Recycled Brick Waste (RBW) to produce Environmental Friendly Concrete: A Review
...Show More Authors

Several million tons of solid waste are produced each year as a result of construction and demolition activities around the world, and brick waste is one of the most widely wastes. Recently, there has been growing number in studies that conducted on using of recycling brick waste (RBW) to produce environmentally friendly concrete. The use of brick waste (BW) as potential partial cement or aggregate replacement materials is summarized in this review where the performance is discussed in the form of the mechanical strength and properties that related to durability of  concrete. It was found that, because the pozzolanic activity of clay brick powder, it can be utilized as substitute for cement in replacement level up t

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Sun Jul 01 2018
Journal Name
International Journal Of Engineering & Technology
Influence of Percentage Replacement of Metakaolin on Different Concrete Types Exposed to Internal Sulphate Attack
...Show More Authors

This research presents an experimental investigation on the influence of metakaolin replacement percentage upon some properties of different concrete types. Three types of concrete were adopted (self- compacted concrete, high performance concrete and reactive powder concrete) all of high sulphate (SO3) percentage from the fine aggregate weight, 0.75%. Three percentages of metakaolin replacement were selected to be studied (5, 7 and 10) %. Three types of concrete properties (compressive, flexural and splitting tensile strength) were adopted to achieve better understanding for the influence of adding metakaolin.. The output results indicated that the percentage of metakaolin had a different level of positive effect on the compressive strength

... Show More
Preview PDF
Publication Date
Mon Nov 01 2021
Journal Name
Journal Of Engineering
Study of Using of Recycled Brick Waste (RBW) to produce Environmental Friendly Concrete: A Review
...Show More Authors

Several million tons of solid waste are produced each year as a result of construction and demolition activities around the world, and brick waste is one of the most widely wastes. Recently, there has been growing number in studies that conducted on using of recycling brick waste (RBW) to produce environmentally friendly concrete. The use of brick waste (BW) as potential partial cement or aggregate replacement materials is summarized in this review where the performance is discussed in the form of the mechanical strength and properties that related to durability of  concrete. It was found that, because the pozzolanic activity of clay brick powder, it can be utilized as substitute for cement in replacement level up to 10%. Whereas,

... Show More
Preview PDF
Crossref (7)
Crossref
Publication Date
Fri May 01 2020
Journal Name
Journal Of Engineering
Influence of fly ash on the volumetric and physical properties of Stone Matrix Asphalt Concrete
...Show More Authors

Stone Matrix Asphalt (SMA) is a gap-graded asphalt concrete hot blend combining high-quality coarse aggregate with a rich asphalt cement content. This blend generates a stable paving combination with a powerful stone-on-stone skeleton that offers excellent durability and routing strength. The objectives of this work are: Studying the durability performance of stone matrix asphalt (SMA) mixture in terms of moisture damage and temperature susceptibility and Discovering the effect of stabilized additive (Fly Ash ) on the performance of stone matrix asphalt (SMA) mixture. In this investigation, the durability of stone matrix asphalt concrete was assessed in terms of temperature susceptibility, resistance to moisture damage, and sensitivity t

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
Prediction of Compressive Strength of Reinforced Concrete Structural Elements by Using Combined Non-Destructive Tests
...Show More Authors

This research is devoted to investigate relationship between both Ultrasonic Pulse Velocity and Rebound Number (Hammer Test) with cube compressive strength and also to study the effect of steel reinforcement on these relationships.
A study was carried out on 32 scale model reinforced concrete elements. Non destructive testing campaign (mainly ultrasonic and rebound hammer tests) made on the same elements. About 72 concrete cubes (15 X 15 X15) were taken from the concrete mixes to check the compressive strength.. Data analyzed.Include the possible correlations between non destructive testing (NDT) and compressive strength (DT) Statistical approach is used for this purpose. A new relationships obtained from correlations results is give

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Energy Procedia
Manufacturing and improving the characteristics of the isolation of concrete composites by additive Styrofoam particulate
...Show More Authors

View Publication
Scopus (29)
Crossref (21)
Scopus Clarivate Crossref
Publication Date
Fri Oct 10 2025
Journal Name
Journal Of Baghdad College Of Dentistry
Effect of different palatal vault shapes and woven glass fiber reinforcement on dimensional stability of high impact acrylic denture base [Part I]
...Show More Authors

Background: Change in palatal vault shape and Reinforcement of high impact acrylic denture base resin may in turn affect the dimensional accuracy of acrylic resin and affecting the fitness of the denture.This study evaluated tostudy the effect of fiber reinforcement for high-impact acrylic resin denture base with different palatal vault shapes on adaptation or gap space between the denture base and the stone cast and compare with non-fiber reinforcement and effect of palatal vault shapes on adaptation of non-reinforced and fiber reinforced high impact denture base acrylic resin Material and method: Three different palatal vault shapes were prepared on standard casts using CNC (computer numerical control) machine. 60 samples of heat polymeri

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
8th Engineering And 2nd International Conference For College Of Engineering – University Of Baghdad: Coec8-2021 Proceedings
Serviceability performance of high-strength concrete flexural members with internally unbonded post-tensioning strands
...Show More Authors

View Publication
Crossref