Preferred Language
Articles
/
3mH9TZkBdMdGkNqjriXA
Numerical Evaluation of Embedded I-Section Strengthening in Axially Loaded Composite Concrete-Filled Stainless Steel Tubes
...Show More Authors

To enhance the structural performance of concrete-filled steel tube (CFST) columns, various strengthening techniques have been proposed, including the use of internal steel stiffeners, external wrapping with carbon fiber-reinforced polymer (CFRP) sheets, and embedded steel elements. However, the behavior of concrete-filled stainless-steel tube (CFSST) columns remains insufficiently explored. This study numerically investigates the axial performance of square CFSST columns internally strengthened with embedded I-section steel profiles under biaxial eccentric loading. Finite element (FE) simulations were conducted using ABAQUS v. 6.2, and the developed models were validated against experimental results from the literature. A comprehensive parametric study was performed to evaluate the effects of several variables, including concrete compressive strength (fcu), stainless-steel yield strength (fy), the depth ratio between the stainless-steel tube and the internal I-section (Dst/Dsi), biaxial eccentricities (ex and ey), and tube thickness (t). The results demonstrated that the axial performance of CFSST columns was most significantly influenced by increasing the Dst/Dsi ratio and load eccentricities. In contrast, increasing the concrete strength and steel yield strength had relatively modest effects. Specifically, the ultimate axial capacity increased by 9.97% when the steel yield strength rose from 550 MPa to 650 MPa and by 33.72% when the tube thickness increased from 3.0 mm to 5.0 mm. A strength gain of only 10.23% was observed when the concrete strength increased from 30 MPa to 60 MPa. Moreover, the energy absorption index of the strengthened columns improved in correlation with the enhanced axial capacities.

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Jun 22 2020
Journal Name
Baghdad Science Journal
Splitting the One-Dimensional Wave Equation. Part I: Solving by Finite-Difference Method and Separation Variables
...Show More Authors

In this study, an unknown force function dependent on the space in the wave equation is investigated. Numerically wave equation splitting in two parts, part one using the finite-difference method (FDM). Part two using separating variables method. This is the continuation and changing technique for solving inverse problem part in (1,2). Instead, the boundary element method (BEM) in (1,2), the finite-difference method (FDM) has applied. Boundary data are in the role of overdetermination data. The second part of the problem is inverse and ill-posed, since small errors in the extra boundary data cause errors in the force solution. Zeroth order of Tikhonov regularization, and several parameters of regularization are employed to decrease error

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Jan 15 2021
Journal Name
Plant Archives
STUDY OF THE EFFECT OF SPEED, DEPTH OF THE CULTIVATION AND THE NUMBER OF TIMES THE SPRING – LOADED CULTIVATOR PASSES ON SOME TECHNICAL PARAMETERS OF THE CULTIVATOR AND ON WEED CONTRO
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Plant Archives
STUDY OF THE EFFECT OF SPEED, DEPTH OF THE CULTIVATION AND THE NUMBER OF TIMES THE SPRING – LOADED CULTIVATOR PASSES ON SOME TECHNICAL PARAMETERS OF THE CULTIVATOR AND ON WEED CONTROL
...Show More Authors

Preview PDF
Publication Date
Tue Dec 13 2022
Journal Name
Frontiers In Chemistry
Numerical analysis of the energy-storage performance of a PCM-based triplex-tube containment system equipped with arc-shaped fins
...Show More Authors

This study numerically intends to evaluate the effects of arc-shaped fins on the melting capability of a triplex-tube confinement system filled with phase-change materials (PCMs). In contrast to situations with no fins, where PCM exhibits relatively poor heat response, in this study, the thermal performance is modified using novel arc-shaped fins with various circular angles and orientations compared with traditional rectangular fins. Several inline and staggered layouts are also assessed to maximize the fin’s efficacy. The effect of the nearby natural convection is further investigated by adding a fin to the bottom of the heat-storage domain. Additionally, the Reynolds number and temperature of the heat-transfer fluid (HTF) are e

... Show More
Scopus (47)
Crossref (37)
Scopus Clarivate Crossref
Publication Date
Tue Nov 01 2016
Journal Name
Journal Of Engineering
Modeling of Comparative Performance of Asphalt Concrete under Hammer, Gyratory, and Roller Compaction
...Show More Authors

The main objective of this study is to develop predictive models using SPSS software (version 18) for Marshall Test results of asphalt mixtures compacted by Hammer, Gyratory, and Roller compaction. Bulk density of (2.351) gm/cc, at OAC of (4.7) % was obtained as a benchmark after using Marshall Compactor as laboratory compactive effort with 75-blows. Same density was achieved by Roller and Gyratory Compactors using its mix designed methods.

A total of (75) specimens, for Marshall, Gyratory, and Roller Compactors have been prepared, based on OAC of (4.7) % with an additional asphalt contents of more and less than (0.5) % from the optimum value. All specimens have been subjected to Marshall Test. Mathematical model

... Show More
View Publication Preview PDF
Publication Date
Tue Sep 01 2015
Journal Name
Journal Of Engineering
Impact of Aggregate Gradation and Filler Type on Marshall Properties of Asphalt Concrete
...Show More Authors

As asphalt concrete wearing course (ACWC) is the top layer in the pavement structure, the material should be able to sustain stresses caused by direct traffic loading. The objective of this study is to evaluate the influence of aggregate gradation and mineral filler type on Marshall Properties.  A detailed laboratory study is carried out by preparing asphalt mixtures specimens using locally available materials including asphalt binder (40-50) penetration grade, two types of aggregate gradation representing SCRB and ROAD NOTE 31 specifications and two types of  mineral filler including limestone dust and coal fly ash. Four types of mixtures were prepared and tested. The first type included SCRB specification and

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 15 2002
Journal Name
Abhath Al- Yarmouk [basic Sciences And Engineering]
Computer Program for Predicting Ultimate Strength of Structural Concrete Sections of General Shape
...Show More Authors

Publication Date
Fri Sep 01 2006
Journal Name
Journal Of Engineering
Effect of Transverse Base Width Restraint on the Cracking Behavior of Massive Concrete
...Show More Authors

The effect of considering the third dimension in mass concrete members on its cracking behavior is investigated in this study. The investigation includes thermal and structural analyses of mass concrete structures. From thermal analysis, the actual temperature distribution throughout the mass concrete body was obtained due to the generation of heat as a result of cement hydration in addition to the ambient circumstances. This was performed via solving the differential equations of heat conduction and convection using the finite element method. The finite element method was also implemented in the structural analysis adopting the concept of initial strain problem. Drying shrinkage volume changes were calculated using the procedure suggested

... Show More
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials
Deformability of non-prismatic prestressed concrete beams with multiple openings of different configurations
...Show More Authors
Abstract<p>This work presents experimental research using draped prestressed steel strands to improve the load-carrying capacity of prestressed concrete non-prismatic beams with multiple openings of various designs. The short-term deflection of non-prismatic prestressed concrete beams (NPCBs) flexural members under static loading were used to evaluate this improvement. Six simply supported (NPCBs) beams, five beams with openings, and one solid specimen used as a reference beam were all tested as part of the experiment. All of the beams were subjected to a monotonic midpoint load test. The configuration of the opening (quadrilateral or circular), as well as the depth of the chords, were the varia</p> ... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Effect of high and low density polyethylene on some mechanical properties of concrete
...Show More Authors

The increasing use of plastics in various aspects of modern life resulted in the availability of enormous amount of wastes, including a negative effect on the environment and humans. So it is necessary to find solutions to deal with these wastes and ensure to use them as solutions to use in concrete mix . In this research the production of concrete containing high and low density polyethylene has been used by (5, 10, 15)% as a replacement of part of the volume of sand, so as to obtain concrete good compressive strength as well as other benefits such as improved possibility of pumping concrete and reduce the loss of concrete for workability polymer is a material that is non-absorbable of water . It is also intended to dispose of these was

... Show More
View Publication Preview PDF
Crossref