This research reports an error analysis of close-range measurements from a Stonex X300 laser scanner in order to address range uncertainty behavior based on indoor experiments under fixed environmental conditions. The analysis includes procedures for estimating the precision and accuracy of the observational errors estimated from the Stonex X300 observations and conducted at intervals of 5 m within a range of 5 to 30 m. The laser 3D point cloud data of the individual scans is analyzed following a roughness analysis prior to the implementation of a Levenberg–Marquardt iterative closest points (LM-ICP) registration. This leads to identifying the level of roughness that was encountered due to the range-finder’s limitations in close-ranging as well as measurements that were obtained from extreme incident angle signals. The measurements were processed using a statistical outlier removal (SOR) filter to reduce the noise impact toward a smoother data set. The geometric differences and the RMSE values in the 3D coordinate directions were computed and analyzed, which showed the potential of the Stonex X300 measurements in close-ranging following a careful statistical analysis. It was found that the error differences in the vertical direction had a consistent behavior when the range increased, whereas the errors in the horizontal direction varied. However, it is more common to produce errors in the vertical direction as compared to the horizontal one.
In this study the assessment radon concentration in sludge of Oil
Fields in North Oil Company (N.O.C.) of Iraq have been studied
using CR-39 solid–state nuclear track detector technique. A total of
34 samples selected from 12 oil stations in the company have been
placed in the dosimeters. The average radon concentration was found
to be 162.29 Bq/m3 which is fortunately lower than the standard
international limit. The potential alpha energy concentration and
annual effective dose have been calculated. A proportional
relationship between the annual effective dose and radon
concentration within the studied region has been certified.
Experimental measurements of viscosity and thermal conductivity of single layer of graphene . based DI-water nanofluid are performed as a function of concentrations (0.1-1wt%) and temperatures between (5 to 35ºC). The result reveals that the thermal conductivity of GNPs nanofluids was increased with increasing the nanoparticle weight fraction concentration and temperature, while the maximum enhancement was about 22% for concentration of 1 wt.% at
35ºC. These experimental results were compared with some theoretical models and a good agreement between Nan’s model and the experimental results was observed. The viscosity of the graphene nanofluid displays Newtonian and Non-Newtonian behaviors with respect to nanoparticles concen
In this report Silver doped Tin Sulfide (SnS) thin films with ratio of (0.03) were prepared using thermal evaporation with a vacuum of 4*10-6 mbar on glass with (400) nm thickness and the sample annealing with ( 573K ). The optical constants for the wavelengths in the range (300-900) nm and Hall effect for (SnS and SnS:3% Ag) films are investigated and calculated before and after annealing at 573 K. Transition metal doped SnS thin films the regular absorption 70% in the visible region, the doping level intensification the optical band gap values from 1.5- 2 eV. Silver doped tin sulfide (SnS) its direct optical band gap. Hall Effect results of (SnS and SnS:3% Ag) films show all films were (p-type) electrical conductivity with resistivity of
... Show MoreAbstract
This research aims to study human error effects in the banking risks in the private banks through the measurement and testing of human error effect in every kind of banking risks types and stand on the most closely associated with the risks in order to focus on them and make appropriate processors have with respect to and increase the availability of skills and expertise required to carry out banking operations of error-free manner.
Find dealt with human error in terms of meaning and understandable, classifications and types, causes and consequences and its approaches and theories. Also addressed placed banking risks in terms of meaning and concept, species and entr
... Show MoreIn recent years, the attention of researchers has increased of semi-parametric regression models, because it is possible to integrate the parametric and non-parametric regression models in one and then form a regression model has the potential to deal with the cruse of dimensionality in non-parametric models that occurs through the increasing of explanatory variables. Involved in the analysis and then decreasing the accuracy of the estimation. As well as the privilege of this type of model with flexibility in the application field compared to the parametric models which comply with certain conditions such as knowledge of the distribution of errors or the parametric models may
... Show MoreThroughout this paper we study the properties of the composition operator
C
p1 o
p2 o…o
pn induced by the composition of finite numbers of special
automorphisms of U,
pi (z) i
i
p z
1 p z
Such that pi U, i 1, 2, …, n, and discuss the relation between the product of
finite numbers of automorphic composition operators on Hardy space H2 and some
classes of operators.
Numerous physiological and biochemical changes are linked to menopause. The current study was intended to examine the transforms linked to anthropometric measurements and bone-related factors. In this study of 80 women which included; they comprised 40 premenopausal women and 40 postmenopausal women. waist circumference (WC), body mass index (BMI), hip circumference (HC), moreover waist to hip ratio are among the anthropometric measurements (W-HR) recorded by standard procedures. The plasma samples were tested for the following biochemical parameters: bone-related parameters [calcium (Ca), phosphorus (P), uric acid (UA), alkaline phosphatase (ALP), and erythrocyte sedimentation rate (ESR)] and serological agglutination tests [rheumat
... Show MoreImaging by Ultrasound (US) is an accurate and useful modality for the assessment of gestational age (GA), estimation fetal weight, and monitoring the fetal growth during pregnancy, is a routine part of prenatal care, and that can greatly impact obstetric management. Estimation of GA is important in obstetric care, making appropriate management decisions requires accurate appraisal of GA. Accurate GA estimation may assist obstetricians in appropriately counseling women who are at risk of a preterm delivery about likely neonatal outcomes, and it is essential in the evaluation of the fetal growth and detection of intrauterine growth restriction. There are many formulas are used to estimate fetal GA in the world, but it's not specify fo
... Show MoreThis research deals with the most important indicators used to measure the phenomenon of financial depth, beyond the traditional indicators, which are called quantitative indicators, which is shown to be inadequate to show the facts accurately, but it may come in the results of a counterfactual, although reliable in econometric studies done in this regard.
Therefore, this research has sought to put forward alternative indicators, is the structural indicators, and financial prices, and availability of financial instruments, and cost of transactions concluded, in order to measure the phenomenon of financial depth.
After using and analyzing data collected from countries the research
... Show MoreCopper and Zinc powders with different particle sizes were subjected to sieving of range (20-100?m) and He-Ne laser system to determine the particle size . 1wt% from each powders was blended carefully with 99wt% from Iraqi oil . Microscopic examination were carried for all samples to reveal the particle size distribution . XRF intensity measurements were conducted for all suspended samples , and the relation between XRF intensity and the particle size was found .