A transdermal drug delivery system (TDDS) is characterized by the application of medications onto the skin's surface to deliver drugs at a controlled and predefined rate through the skin. Spanlastics, an elastic nanovesicle capable of transporting various pharmacological substances, shows promise as a drug delivery carrier. It offers numerous advantages over traditional vesicular systems applied topically, including enhanced stability, flexibility in penetration, and improved targeting capabilities. This study aims to develop meloxicam (MX)-loaded spanlastics gel as skin delivery carriers and to look into the effects of formulation factors like Tween80, Brij 35, and carbopol concentration on the properties of spanlastics gel, like pH, drug content, extrudability, spreadability diameter, viscosity, and release profiles in addition to Ex vivo skin permeation for optimal formula. The optimal formula of spanlastics gel (GF1) shows acceptable pH (6.2±0.14), excellent extrudability( 92%), drug content (97.1±0.14), spreadability diameter (cm) (10.8±0.28), sustained release 70.7±0.57% for six hours and the steady-state flux of meloxicam through rat skin was increased 83.52- fold as a result of spanlastics in comparison to the plain gel. The vesicles produced in this investigation could potentially interact with or merge with the stratum corneum as a result of their elasticity, which may also be the mechanism that increases the penetration into the skin. According to our findings, dermal delivery vehicles for MX may be provided via spanlastics gel
ABSTRACT: In this research SnO2 thin films have been prepared by using hot plate atmospheric pressure chemical vapor deposition (HPCVD) on glass and Si (n-type) substrates at various temperatures. Optical properties have been measured by UV-VIS spectrophotometer, maximum transmittance about (94%) at 400 0C. Structure properties have been studied by using X-ray diffraction (XRD) , its shows that all films have a crystalline structure in nature and by increasing growth temperature from(350-500) 0C diffraction peaks becomes sharper and grain size has been change. Atomic force microscopy (AFM) uses to analyze the morphology of the Tine Oxides surface structure. Roughness & Root mean square for different temperature have been investigated. The r
... Show MorePhenytoin selective electrodes were constructed based on penytoin-phosphotungstate (Ph-PT) complex with different plasticizers; di-butyl phosphate (DBP), tri-butyl phosphate (TBP), di-butyl phthalate (DBPH),and o-nitro phenyl octyl ether (NPOE) phthalate. The electrodes based on DBPH, ONPOE plasticizers gave Narnistain slope which are, 56.4 and 55.3mV/decade with detection limit of 1.9x10-5 M , 1.8x10-5 and concentration range 10-1 to 10-4 M and pH range 3.0 – 8.0. The electrodes based on TBP and DBP showed non-Nernistain slopes, 40.2,40.5 mV/decade for both plasticizers. Interfering of some cations was investigated and shows no interfering with electrodes response. Potentiometric methods were used for measuring phenytion in
... Show MorePolymeric hollow fiber membrane is produced by a physical process called wet or dry/wet phase inversion; a technique includes many steps and depends on different factors (starting from selecting materials, end with post-treatment of hollow fiber membrane locally manufactured). This review highlights the most significant factors that affect and control the characterization and structure of ultrafiltration hollow fiber membranes used in different applications. Three different types of polymers (polysulfone PSF, polyethersulfone PES or polyvinyl chloride PVC) were considered to study morphology change and structure of hollow fiber membranes in this review. These hollow fiber membranes were manufactured with different proce
... Show MoreBackground: Fast dissolving oral drug delivery system is solid dosage form which disintegrates or dissolves within second when placed in the mouth without need of water or chewing. In present investigation, an attempt has been made to develop oral fast dissolving film of calcium channel blocker lacidipine. Method: Five formulas were prepared by solvent casting method using HPMC (METOLOSE)® as a film forming polymer and evaluated for their physical characteristics such as thickness, weight variation, folding endurance, drug content, disintegration time and in vitro drug release. The compatibility of the drug in the formulation was confirmed by FTIR and DSC studies. Result and Conclusion: The optimized formula F1 showed minimum in vitr
... Show MoreAntacids have been widely used in the treatment of various gastric and duodenal disorders such as heartburn, reflux esophagitis, gastritis, irritable stomach, gastric and duodenal ulcers. A pH-responsive of bi-polymer of sodium alginate and pectin have been studied as raft-forming polymers using sodium bicarbonate and calcium carbonate as gas-generating and calcium ion sources. The aim of study was to formulate and evaluate mono and bilayer tablets of floating and sustained release antacid delivery systems using sodium carboxy methyl cellulose as a gel forming substance, calcium and magnesium carbonate as sources of acid neutralizing and carbon dioxide gas generators agents upon contact with acidic solution. The effect of the formulation
... Show MoreBackground: Systemic sclerosis (SSc) is a chronic autoimmune illness, which is consider by three main features: Sclerotic changes in the skin and internal organs, Vasculopathy of small blood vessels, Particular autoantibodies (1). The most important autoantibodies appeared significantly in SSc patients are anti-topoisomerase I autoantibody (Scl-70), anti-centromere autoantibody (ACA), and anti-RNA polymerase III autoantibody (RNAP3) (2). Anti-centromere antibodies (ACA) are infrequent in rheumatic conditions and in healthy persons but occur commonly in limited systemic sclerosis (CREST syndrome), and rarely appeared in the diffuse form of systemic sclerosis (3). Anti-Ro/SSA and antiLa/SSB, antibodies directed against Ro/La ribonucleoprot
... Show MoreWaste materials might be utilized in various applications, such as sustainable roller compacted concrete pavements (RCCP), to lessen the negative environmental consequences of construction waste. The impacts of utilizing (brick, thermostone, granite, and ceramic) powders on the mechanical characteristics of RCCP are investigated in this study. To achieve this, the waste materials were crushed, grounded, and blended before being utilized as filler in the RCCP. After the mixes were prepared, compressive strength, splitting tensile strength, flexural strength, water absorption, density, and porosity were all determined. According to the research results, adding some of these powders, mainly brick and granite powder, enhances the mechanical
... Show MoreLandfill and incineration are the most common and widely used methods to dispose of solid wastes; both of these techniques are considered the main sources of pollution in the world due to the harmful toxic emissions that are considered an environmental problem. Because of the large areas used by landfills, they are not always considered an economical method. With the increase in the production of solid materials, solid wastes increase the pressure on incinerators and landfills, making the environmental pollution hazard more serious. Instead, these waste materials can be used in some other applications. One of the most important of these applications is asphalt pavements, which are the most used types of pavements in the
... Show MoreThe world's population growth and the increasing demand for new infrastructure facilities and buildings , present us with the vision of a higher resources consumption, specially in the form of more durable concrete such as High Performance Concrete (HPC) . Moreover , the growth of the world pollution by plastic waste has been tremendous. The aim of this research is to investigate the change in mechanical properties of HPC with added waste plastics in concrete. For this purpose 2.5%, 5% and 7.5% in volume of natural fine aggregate in the HPC mixes were replaced by an equal volume of Polyethylene Terephthalate (PET) waste , got by shredded PET bottles. The mechanical propert
... Show More
