Staphylococcus haemolyticus is one of the most frequently isolated coagulase-negative staphylococci. The ability to form biofilm is considered as one of the most important virulence factors of coagulase negative staphylococci. There is only limited knowledge of the nature of S. haemolyticus biofilms. This study was aimed at evaluating the ability of S. haemolyticus strains to produce biofilm in the presence of copper oxide nanoparticles (CuONPs). The biological synthesis of nanoparticles is an environmentally friendly approach for large-scale production of nanoparticles. Copper oxide nanoparticles were produced in the current study from the S. haemolyticus viable cell filtrate. UV-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), atomic force microscope (AFM), field emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscopy (EDX) and zeta potential (ZP) analysis were used to analyze the newly synthesized CuONPs. Our findings revealed that at minimum inhibitory concentration (MIC), CuONPs showed remarkable inhibition on the biofilms produced by multidrug resistant (MDR) S. haemolyticus isolates.
The research deals with the impact of the nature of social and political formation in the orientation towards extremism through tracking the institutions and beliefs that the individual is going through. The role of the family, the group, the school, education, and religion has been touched upon in acquiring the trends of extremism, whether publicly or covertly, Focusing on the social and economic contexts that are an incubator environment for extremism supported by the form of the group and the beliefs it espouses, whether direct through religion or indirectly through the nature of education, this study relied on political literature that addressed this The topic, which focused on the phenomenon of extremism that swept the world recentl
... Show MoreIn this study, SnO2 nanoparticles were prepared from cost-low tin chloride (SnCl2.2H2O) and ethanol by adding ammonia solution by the sol-gel method, which is one of the lowest-cost and simplest techniques. The SnO2 nanoparticles were dried in a drying oven at a temperature of 70°C for 7 hours. After that, it burned in an oven at a temperature of 200°C for 24 hours. The structure, material, morphological, and optical properties of the synthesized SnO2 in nanoparticle sizes are studied utilizing X-ray diffraction. The Scherrer expression was used to compute nanoparticle sizes according to X-ray diffraction, and the results needed to be scrutinized more closely. The micro-strain indicates the broadening of diffraction peaks for nano
... Show MoreAbstract Background: The daily usage of maxillofacial prostheses causes them to mechanically deteriorate with time. This study was aimed to evaluate the reinforcement of VST50F maxillofacial silicone by using yttrium oxide (Y2O3) nanoparticles (NPs) to resist aging and mechanical deterioration. Materials and Method: Y2O3 NPs (30–45nm) were loaded into VST50F maxillofacial silicone in two weight percentages (1 and 1.5 wt%), which were predetermined in a pilot study as the best rates for improving tear strength with minimum increase in hardness values. A total of 120 specimens were prepared and divided into the control and experimental groups (with 1 and 1.5 wt% Y2O3 addition). Each group included 40 specimens, 10 specimens for each paramet
... Show MoreThis research presents a study for precipitating phosphorus (as phosphate ion) from simulated wastewater (5ppm initial concentration of phosphorus) using calcium hydroxide Ca(OH)2 solution. The removal of phosphorus by Ca (OH)2 solution is expected to be very effective since the chemical reaction is of acid-base type but Ca(OH)2 forms complex compound with phosphate ions called. Hydroxyapatite Ca5 (PO4)3OH. hydroxyapatite is slightly soluble in water. This research was directed towards sustainable elements as phosphorus. Kinetics of the dissolution reaction of hydroxyapatite was investigated to find the best factors to recover phosphorus. The effect of con
... Show MoreAntibacterial activity of CNSs against Staphylococcus aureus and Escherichia coli was estimated. Higher inhibition zone of 18 mm and 20 mm were observed against S. aureus and E.coli, respectively, at a concentration of 2 mg/ml of carbon nanosphere after 24 hrs of incubation at 37 ºC. In vitro cytotoxicity experiment was performed on two parasite strains of Leishmania donovani and Leishmania tropica by using MTT assay. L. donovani revealed more sensitiv to the CNSs than L. tropica. An intermediate level of cytotoxicity of 51.31 % was observed when 2.4 mg/ml of CNSs was incubated with L. donovani, while weak cytotoxicity of 37.20 % was shown when the
... Show MoreExposure to cryogenic liquids can significantly impact the petrophysical properties of rock, affecting its density, porosity, permeability, and elastic properties. These effects can have important implications for various applications, including oil and gas production and carbon sequestration. Cryogenic liquid fracturing is a promising alternative to traditional hydraulic fracturing for exploiting unconventional oil and gas resources and geothermal energy. This technology offers several advantages over traditional hydraulic fracturing, including reduced water consumption, reduced formation damage, and a reduced risk of flow-back fluid contamination. In this study, an updated review of recent studies demonstrates how the
... Show MoreRecently the use of nanofluids represents very important materials. They are used in different branches like medicine, engineering, power, heat transfer, etc. The stability of nanofluids is an important factor to improve the performance of nanofluids with good results. In this research two types of nanoparticles, TiO2 (titanium oxide) and γ-Al2O3 (gamma aluminum oxide) were used with base fluid water. Two-step method were used to prepare the nanofluids. One concentration 0.003 vol. %, the nanoparticles were examined. Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and X-ray diffraction (XRD) were used to accomplish these tests. The stability of the two types of nanofluids is measured by
... Show MoreThe biological effects of pulsed N2-laser on the old world screw-worm fly, Chrysomya bezziana Villeneuve in the pupal stage were investigated. Different laser parameters were involved in this work. The old pupae of 1, 2, 3, 4 and 5 days were exposed to laser radiation during 10, 30 and 60 second with repetition rate 10, 20 and 30 pulse/second. The percent of normal adults emergence (female and male) was investigated. The results showed that the adults emergence was highly decreased as the repetition rate and exposure time increased when the pupae irradiated for 1, 2 and 3 days old as compared with 4 and 5 days. The results also indicated that the pupal period was significantly increased of irradiated pupae for 1, 2, 3 and 4 days old, whi
... Show MoreAging of asphalt pavements typically occurs through oxidation of the asphalt and evaporation of the lighter maltenes from the binder. The main objective of this study is to evaluate influence of aging on performance of asphalt paving materials.nAsphalt concrete mixtures, were prepared, and subjected to short term aging (STA) procedure which involved heating the loose mixtures in an oven for two aging period of (4 and 8) hours at a temperature of 135 o C. Then it was subject to Long term aging (LTA) procedure using (2 and 5) days aging periods at 85 o C for Marshall compacted specimens. The effect of aging periods on properties of asphalt concrete at optimum asphalt content such as Marshall Properties, indirect tensile strength at 25 o C,
... Show More