Metal-organic frameworks (MOFs) are a relatively new class of materials of unique porous structures and exceptional properties. Currently, more than 110,000 types of MOFs have been reported among the countless possibilities. In this study, we have synthesised a novel MOF using zirconium chloride as the metal source and 4,4'-dicarboxy-2,2'-biquinoline (bicinchoninic acid disodium salt) as the linker, which reacted in N,N-Dimethylformamide (DMF) solvent. Three preparation methods were employed to prepare five types of the MOF, and they were compared to optimize the synthesis conditions. The resulting MOFs, named Zr-BADS, were characterised using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), microscopy, and X-ray diffraction (XRD). By incorporating methanol into the preparation solvent, the surface area was increased to 396 m2/g. Additionally, the prepared MOFs exhibited amorphous shapes, with variations in size depending on the synthesis method. This research demonstrates the significance of the preparation method in controlling resulting particles’ properties.
An accurate assessment of the pipes’ conditions is required for effective management of the trunk sewers. In this paper the semi-Markov model was developed and tested using the sewer dataset from the Zublin trunk sewer in Baghdad, Iraq, in order to evaluate the future performance of the sewer. For the development of this model the cumulative waiting time distribution of sewers was used in each condition that was derived directly from the sewer condition class and age data. Results showed that the semi-Markov model was inconsistent with the data by adopting ( 2 test) and also, showed that the error in prediction is due to lack of data on the sewer waiting times at each condition state which can be solved by using successive conditi
... Show MoreThis research introduces a proposed hybrid Spam Filtering System (SFS) which consists of Ant Colony System (ACS), information gain (IG) and Naïve Bayesian (NB). The aim of the proposed hybrid spam filtering is to classify the e-mails with high accuracy. The hybrid spam filtering consists of three consequence stages. In the first stage, the information gain (IG) for each attributes (i.e. weight for each feature) is computed. Then, the Ant Colony System algorithm selects the best features that the most intrinsic correlated attributes in classification. Finally, the third stage is dedicated to classify the e-mail using Naïve Bayesian (NB) algorithm. The experiment is conducted on spambase dataset. The result shows that the accuracy of NB
... Show MoreThe direct electron transfer behavior of hemoglobin that is immobilized onto screen-printed carbon electrode (SPCE) modified with silver nanoparticles (AgNPs) and chitosan (CS) was studied in this work. Cyclic voltametry and spectrophotometry were used to characterize the hemoglobin (Hb) bioconjunction with AgNPs and CS. Results of the modified electrode showed quasi-reversible redox peaks with a formal potential of (-0.245 V) versus Ag/AgCl in 0.1 M phosphate buffer solution (PBS), pH7, at a scan rate of 0.1 Vs-1. The charge transfer coefficient (α) was 0.48 and the apparent electron transfer rate constant (Ks) was 0.47 s-1. The electrode was used as a hydrogen peroxide biosensor with a linear response over 3 to 240 µM and a detection li
... Show MoreDiagnosing heart disease has become a very important topic for researchers specializing in artificial intelligence, because intelligence is involved in most diseases, especially after the Corona pandemic, which forced the world to turn to intelligence. Therefore, the basic idea in this research was to shed light on the diagnosis of heart diseases by relying on deep learning of a pre-trained model (Efficient b3) under the premise of using the electrical signals of the electrocardiogram and resample the signal in order to introduce it to the neural network with only trimming processing operations because it is an electrical signal whose parameters cannot be changed. The data set (China Physiological Signal Challenge -cspsc2018) was ad
... Show MoreA substantial portion of today’s multimedia data exists in the form of unstructured text. However, the unstructured nature of text poses a significant task in meeting users’ information requirements. Text classification (TC) has been extensively employed in text mining to facilitate multimedia data processing. However, accurately categorizing texts becomes challenging due to the increasing presence of non-informative features within the corpus. Several reviews on TC, encompassing various feature selection (FS) approaches to eliminate non-informative features, have been previously published. However, these reviews do not adequately cover the recently explored approaches to TC problem-solving utilizing FS, such as optimization techniques.
... Show MoreIn many areas, such as simulation, numerical analysis, computer programming, decision-making, entertainment, and coding, a random number input is required. The pseudo-random number uses its seed value. In this paper, a hybrid method for pseudo number generation is proposed using Linear Feedback Shift Registers (LFSR) and Linear Congruential Generator (LCG). The hybrid method for generating keys is proposed by merging technologies. In each method, a new large in key-space group of numbers were generated separately. Also, a higher level of secrecy is gained such that the internal numbers generated from LFSR are combined with LCG (The adoption of roots in non-linear iteration loops). LCG and LFSR are linear structures and outputs
... Show MoreThe expansion of web applications like e-commerce and other services yields an exponential increase in offers and choices in the web. From these needs, the recommender system applications have arisen. This research proposed a recommender system that uses user's reviews as implicit feedback to extract user preferences from their reviews to enhance personalization in addition to the explicit ratings. Diversity also improved by using k-furthest neighbor algorithm upon user's clusters. The system tested using Douban movie standard dataset from Kaggle, and show good performance.
The objective of this investigation was to study the effects of a mixture of three arbuscular mycorrhizae (Glomus etunicatum, G. leptotichum and Rhizophagus intraradices) on the development of fusarium wilt disease in tomato plants in the presence and absence of organic matter (peatmoss). Results indicated an increase in mycorrhizal root dry weight especially in the presence of the organic matter, on the other hand this parameter was significantly decreased when Fusarium oxysporum f. sp. Lycopersiciwas added simultaneously with the mycorrhiza, Moreover, mycorrhiza and organic matter significantly reduced the damping off seedling disease, disease severity and rate of infection of tomato leaves and roots caused by the pathogenic fungus, These
... Show More