The scarcity of irrigation water requires procedures of specific. One of these procedures is the implementation of the rationing system (a period of the irrigation followed by a period of the dry). This system can have an impact on the properties of irrigation channels. Therefore, the study of rationing system for irrigation channels is important in both water resources and civil engineering, especially if they are constructed with gypseous soil. In order to assess the rationing system on gypseous canals stabilized with a specific ratio of cement, practical experiments were conducted to detect the effect of wetting and drying cycles on the physical and hydraulic behavior of this soil and calculation of some properties of soil such as scouring, grain size and gypsum content of soil at each cycle (10 days wetting and 10 days of drying). Where the gypseous soil with gypsum content 65 % was brought from Lake Sawh-Iraq to the hydraulic laboratory at the University of Baghdad, Physical and chemical tests were carried out according to the standard classification system. The laboratory work includes construction of a laboratory flume with gypseous soil to calculate the scouring of the canal and effect grain size of soil by two methods (the standard sieve analysis and Particle size absorptive test) and also calculate gypsum content at each rationing cycle, where the channel consists of two stages of operation, the one for untreated soil (4 cycles operation) and the other for soil mixed with 10% cement (5 cm of cement mixture above 5cm soil) 4 cycles also. The results show that the rationing cycles reduce the scouring of canal in the case of untreated soil by 56.6% and in the case of treated soil 82%. The rationing system led to course the gradient of soil according to two methods. Also its reduction of the gypsum content in the case of untreated soil by 43% and in the case of treated soil 45.6%. Thus, conclude that the rationing system leads to a positive effect on some properties of gypsum soils and the lining of irrigation channels
The eaction of 2 4 .6-trihydroxyactophenonemonohydra1e with
l hydr.azine monohydrate was realized ti·nder reflu.(( in methanol and i:l.
Jew drops of glacial acetic acid we.re added to give lhe'(int rmediate)
2-(1hydr pno-ctbyt)-benzcne-·1.3.5-r:Qql, which reacted wittl
saEcy.laldehyde. jn methm)ql to gjy;e 'a new :tyRe CNzOi) Ligand (H:flL]
f(2-{1-[(2-=bydroxy-bertzylide·ne)-bydrazqoo,J-e·thy.1}bcnze·neJ ;3·,5
|
New Schiff base [3-(3-acetylthioureido)pyrazine-2-carboxylic acid][L] has been prepared through 2 stages, the chloro acetyl chloride has been reacting with the ammonium thiocyanate in the initial phase for producing precursor [A], after that [A] has been reacting with the 3-amino pyrazine-2-carboxilic acid to provide a novel bidentate ligand [L], such ligand [L] has been reacting with certain metal ions in the Mn(II), VO(II), Ni(II), Co(II), Zn(II), Cu(II), Hg(II), and Cd(II) for providing series of new metal complexes regarding general molecular formula [M(L)2XY], in which; VO(II); X=SO4,Y=0, Co(II), Mn(II), Cu(II), Ni(II), Cd(II), Zn(II), and Hg(II); Y=Cl, X=Cl. Also, all the compounds were characterized through spectroscopic techniques [
... Show MoreThe purpose of this study was to find out the connection between the water parameters that were examined in the laboratory and the water index acquired from the examination of the satellite image of the study area. This was accomplished by analysing the Landsat-8 satellite picture results as well as the geographic information system (GIS). The primary goal of this study is to develop a model for the chemical and physical characteristics of the Al-Abbasia River in Al-Najaf Al-Ashraf Governorate. The water parameters employed in this investigation are as follows: (PH, EC, TDS, TSS, Na, Mg, K, SO4, Cl, and NO3). To collect the samples, ten sampling locations were identified, and the satellite image was obtained on the
... Show MoreSchiff base (methyl 6-(2- (4-hydroxyphenyl) -2- (1-phenyl ethyl ideneamino) acetamido) -3, 3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0] heptane-2-carboxylate)Co(II), Ni(II), Cu (II), Zn (II), and Hg(II)] ions were employed to make certain complexes. Metal analysis M percent, elemental chemical analysis (C.H.N.S), and other standard physico-chemical methods were used. Magnetic susceptibility, conductometric measurements, FT-IR and UV-visible Spectra were used to identified. Theoretical treatment of the generated complexes in the gas phase was performed using the (hyperchem-8.07) program for molecular mechanics and semi-empirical computations. The (PM3) approach was used to determine the heat of formation (ΔH˚f), binding energy (ΔEb), an
... Show MoreInnovative various Schiff bases and their Co(II), Ni(II) and Cu(II) and Hg(II) compounds made by the condensation of 4-amino antipyrine with derived aminobenzoic acid (2-aminobenzoic acid, 3-aminobenzoic acid, and 4-aminobenzoic acid ) have been prepared by conventional approaches. These complexes were described by magnetic sensibility analysis, FT-IR spectra, and molar-conductance and elemental analysis. Analytical values appeared which the mixed-ligand complexes presented ratio about 2:1 (ligand: metal) with the chelation 4 or 6. The prepared compounds offered a good effect on the organisms; bacteria Staphylococcus-aurous, Escherichia-coli and fungi C. albicans, A. niger. Also, the biological products signalize which the mixed compl
... Show MoreThe reaction oisolated and characterized by elemental analysis (C,H,N) , 1H-NMR, mass spectra and Fourier transform (Ft-IR). The reaction of the (L-AZD) with: [VO(II), Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)], has been investigated and was isolated as tri nuclear cluster and characterized by: Ft-IR, U. v- Visible, electrical conductivity, magnetic susceptibilities at 25 Co, atomic absorption and molar ratio. Spectroscopic evidence showed that the binding of metal ions were through azide and carbonyl moieties resulting in a six- coordinating metal ions in [Cr (III), Mn (II), Co (II) and Ni (II)]. The Vo (II), Cu (II), Zn (II), Cd (II) and Hg (II) were coordinated through azide group only forming square pyramidal
... Show MoreThe preparation and spectral characterization of complexes for Co(II), Ni(II), Cu(II), Cd(II), Zn(II) and Hg(II) ions with new organic heterocyclic azo imidazole dye as ligand 2-[(2`-cyano phenyl) azo ]-4,5-diphenyl imidazole ) (2-CyBAI) were prepared by reacting a dizonium salt solution of 2-cyano aniline with 4,5-diphenyl imidazole in alkaline ethanolic solution .These complexes were characterized spectroscopically by infrared and electronic spectra along with elemental analysis‚ molar conductance and magnetic susceptibility measurements. The data show that the ligand behaves a bidantate and coordinates to the metal ion via nitrogen atom of azo and with imidazole N3 atom. Octahedral environment is suggested for all metal complex
... Show MoreNew bidentate Schiff base ligand (L) namely [(Z)-3-(2-oxoindolin-3ylildeneamino)benzoic acid] type (NO) was prepared via condensation of isatin and 3-amino benzoic acid in ethanol as a solvent in existence of drops of (glac. CH3COOH). The new ligand (L) was characterized base on elemental microanalysis, FT-IR, UV-Vis, 1H-NMR spectra along with melting point. Ligand complexes in general formula [M(L)2Cl2]. H2O, where: MII = Co, Cu, Cd, and Hg; L= C15H10 N2O3 were synthesized and identified by FT-IR, UV-Vis, 1H-NMR (for Cd complex only) spectra, atomic absorption, chloride content along with molar conductivity and magnetic susceptibility. It was found that the ligand behaves as bidentate on complexation via (N) atom of imine group an
... Show More