Studies on the flexural behavior of post-tensioned beams subjected to strand damage and strengthened with near-surface mounted (NSM) technique using carbon fiber-reinforced polymer (CFRP) are limited and fail to examine the effect of CFRP laminates on strand strain and strengthening efficiency systematically. Furthermore, a design approach for UPC structures in existing design guidelines for FRP strengthening techniques is lacking. Hence, the behavior of post-tensioned beams strengthened with NSM-CFRP laminates after partial strand damage is investigated in this study. The testing program consists of seven post-tensioned beams strengthened by NSM-CFRP laminates with three partial strand damage ratios (14.3% symmetrical damage, 14.3% asymmetric damage, and 28.6% symmetrical damage). The experimental results showed that the use of CFRP laminates significantly increases the flexural capacity by up to 17.4 to 20.4%, corresponding to a strand damage ratio of 14.3 and 28.6%, respectively, enhances the stiffness, and reduces strand strain by up to 15.8 to 22.2%. However, the flexural stiffness of strengthened beams during serviceability phases is critical as strand damage ratios increase. Additionally, semi-empirical equations were proposed to predict the actual strain of unbonded strands whilst considering the effects of CFRP laminates. The suggested equations provide accurate predictions with little variance. Doi: 10.28991/CEJ-2022-08-07-013 Full Text: PDF
The flavonoglycone hesperidin is recognized as a potent anti-inflammatory, anticancer, and antioxidant agent. However, its poor bioavailability is a crucial bottleneck regarding its therapeutic activity. Gold nanoparticles are widely used in drug delivery because of its unique properties that differ from bulk metal. Hesperidin loaded gold nanoparticles were successfully prepared to enhance its stability and bioactive potential, as well as to minimize the problems associated with its absorption. The free radical scavenging activities of hesperidin, gold nanoparticles, and hesperidin loaded gold nanoparticles were compared with that of Vitamin C and subsequently evaluated in vitro using 2,2-diphenyl-1-picrylhydrazyl assay. The antioxi
... Show MoreBackground: Menopause can bring oral health problems and also associated with significant adverse changes in the orofacial complex. After menopause, women become more susceptible to periodontal disease due to deficiency of estrogen hormone. Current study aimed to evaluate the periodontal health status in relation to salivary constituent including pH, flow rate and some elements (Magnesium, Calcium and inorganic phosphorus) of pre and post-menopause women. Materials and Methods: Periodontal health status of 52 women aged 48-50 years old (26 pre-menopause and 26 post-menopause) were examined including (gingival index, plaque index, calculus index, probing pocket depth and clinical attachment level). Salivary sample was collected for two women
... Show MoreObjectives To tailor composites of polyethylene–hydroxyapatite to function as a new intracanal post for the restoration of endodontically treated teeth (ETT). Methods Silanated hydroxyapatite (HA) and zirconium dioxide (ZrO2) filled low-density polyethylene (LDPE) composites were fabricated by a melt extrusion process and characterised using infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The flexural strength and modulus were determined in dry state and post ageing in simulated body fluid and fractured surfaces analysed by SEM. The water uptake and radiographic appearance of the experimental composites were also measured and compared with a commercially known endodontic fibre
... Show MoreThis research is devoted to investigate the behavior and performance of reinforced concrete beams strengthened with externally bonded Carbon Fiber Reinforced Polymer (CFRP) laminates under the effect of torsion. In this study a theoretical analysis has been conducted using finite element code ANSYS. Six previously tested beams are used to investigate reinforced concrete beams behavior
under torsion, two of them are solid and the rest are box-section beams. Also, two beams are without CFRP reinforcement, which are used as control beams for the strengthened one, and the other four beams are strengthened with CFRP laminates with different number of layers and spacing. Numerical investigation is conducted on these beams, and comparisons b
This research presents an experimental investigation of the rehabilitation efficiency of the damaged hybrid reinforced concrete beams with openings in the shear region. The study investigates the difference in retrofitting ability of hybrid beams compared to traditional beams and the effect of two openings compared with one opening equalized to two holes in the area. Five RC beams classified into two groups, A and B, were primarily tested to full-failure under two-point loads. The first group (A) contained beams with normal weight concrete. The second group (hybrid) included beams with lightweight concrete for web and bottom flange, whereas the top flange was made from normal concrete. Two types of openings were considered in this s
... Show MoreTwo of the main advantages of segmental construction are economics, as well as the rapid construction technique. One of the forms of segmental construction, for structural elements, is the segmental beams that built-in short sections, which referred to segments. This research aims to exhibit a new technique for the fabrication of short-span segmental beams from wedge-shaped concrete segments and carbon fiber reinforced polymers (CFRP) in laminate form. The experimental campaign included eight short-span segmental beams. In this study, two selected parameters were considered. These parameters are; the number of layers of CFRP laminates and the adhesive material that used to bond segments to each other, forming short-span segmental be
... Show MoreExperimental research was carried out to investigate the performance of CFRP wrapping jackets used for retrofitting twelve square reinforced concrete (CR) column specimens damaged by exposure to fire flame, at different temperatures of 300, 500 and 700ºC, except for two specimens that were not burned. The specimens were then loaded axially till failure after gradual or sudden cooling. The specimens were divided into two groups containing two main reinforcement ratios, ρ= 0.0314 and ρ= 0.0542. This was followed by the retrofitting procedure that included wrapping all the specimens with two layers of CFRP fabric sheets. The test results of the retrofitted specimens showed that the fire damaged RC
... Show MoreTest results of nine reinforced concrete one way slab with and without lacing reinforcement are reported. The tests were designed to study the effect of the lacing reinforcement on the flexural response of one way slabs. The test parameters were considered is the lacing steel ratios of (0, 0.0025, 0.0045, and 0.0065), flexural steel ratios of (0.0025, 0.0045, and 0.0065) and span to the effective depth ratios of (11, 13, and 16). Two specimens had no lacing reinforcement and the remaining seven specimens had the lacing reinforcement. Four point bending test were carried out, one of the specimens was tested under the static load applied gradually up to failure and the other specimens were tested under repeated load (5 cyc
... Show MoreIn this study, a genetic algorithm (GA) is used to detect damage in curved beam model, stiffness as well as mass matrices of the curved beam elements is formulated using Hamilton's principle. Each node of the curved beam element possesses seven degrees of freedom including the warping degree of freedom. The curved beam element had been derived based on the Kang and Yoo’s thin-walled curved beam theory. The identification of damage is formulated as an optimization problem, binary and continuous genetic algorithms
(BGA, CGA) are used to detect and locate the damage using two objective functions (change in natural frequencies, Modal Assurance Criterion MAC). The results show the objective function based on change in natural frequency i
Consuming of by-product or waste materials in highway engineering is significant in the construction of new roads and/or in renovations of the existing ones. Pulverised Fuel ash (PFA), which is a by-product material of burning coal in power stations, is one of these materials that might be incorporated instead of mineral filler in hot asphalt mixtures.
Two types of surface course mixtures have been prepared one with conventional mineral filler i.e. ordinary Portland cement (OPC) while the second was with PFA. Several testings have been conducted to indicate the mechanical properties which were Marshall Stability and Indirect Tensile Strength tests. On the other hand, moisture damage and ageing have been evaluated
... Show More