Today’s modern medical imaging research faces the challenge of detecting brain tumor through Magnetic Resonance Images (MRI). Normally, to produce images of soft tissue of human body, MRI images are used by experts. It is used for analysis of human organs to replace surgery. For brain tumor detection, image segmentation is required. For this purpose, the brain is partitioned into two distinct regions. This is considered to be one of the most important but difficult part of the process of detecting brain tumor. Hence, it is highly necessary that segmentation of the MRI images must be done accurately before asking the computer to do the exact diagnosis. Earlier, a variety of algorithms were developed for segmentation of MRI images by using different tools and techniques. However, this paper presents a comprehensive review of the methods and techniques used to detect brain tumor through MRI image segmentation. Lastly, the paper concludes with a concise discussion and provides a direction toward the upcoming trend of more advanced research studies on brain image segmentation and Tumor detection.
Locking of the knee is a one of the commonest orthopedic outpatient presentation. This patient usually need magnetic resonance imaging (MRI) when there is suspected lesion in the soft tissue clinically. Meniscal tears is the first differential diagnosis when accompany with painful knee. (1, 2)Giant cell tumor (GCT) is benign a localized nodular tenosynovitis often occur in the tendon sheath , Mostly involve the hand tendons in middle age group between 30 and 50 years old , female affect more than male.(3,4) The WHO defines two well-known kinds of giant cell tumor: (1) pigmented villonodular synovitis ( generalized type), which mainly involve the joints of the lower limb and (2) giant cell tumor of the tendon sheath ( localized type)
... Show MoreLocking of the knee is a one of the commonest orthopedic outpatient presentation. This patient usually need magnetic resonance imaging (MRI) when there is suspected lesion in the soft tissue clinically. Meniscal tears is the first differential diagnosis when accompany with painful knee. (1, 2)
Giant cell tumor (GCT) is benign a localized nodular tenosynovitis often occur in the tendon sheath , Mostly involve the hand tendons in middle age group between 30 and 50 years old , female affect more than male.(3,4) The WHO defines two well-known kinds of giant cell tumor: (1) pigmented villonodular synovitis ( generalized type), which mainly involve the joints of the lower limb and (2) giant cell tumor of the tendon sheath ( localized type)
optical properties of pure poly(vinyl Alcohol) films and poly(vinyl Alcohol) doped with methyl red were study, different percentage prepared with constant thickness using casting technique. Absorption, Transmission spectra have been recorded in order to study the optical parameters such as absorption coefficient, energy gap, refractive index, Extinction coefficient and dispersion parameters were measured in the wavelength range (200-800)nm. This study reveals that the optical properties of PVA affect by increasing the impurity concentration.
Feature extraction provide a quick process for extracting object from remote sensing data (images) saving time to urban planner or GIS user from digitizing hundreds of time by hand. In the present work manual, rule based, and classification methods have been applied. And using an object- based approach to classify imagery. From the result, we obtained that each method is suitable for extraction depending on the properties of the object, for example, manual method is convenient for object, which is clear, and have sufficient area, also choosing scale and merge level have significant effect on the classification process and the accuracy of object extraction. Also from the results the rule-based method is more suitable method for extracting
... Show MoreIn this work, watershed transform method was implemented to detect and extract tumors and abnormalities in MRI brain skull stripped images. An adaptive technique has been proposed to improve the performance of this method.Watershed transform algorithm based on clustering techniques: K-Means and FCM were implemented to reduce the oversegmentation problem. The K-Means and FCM clustered images were utilized as input images to the watershed algorithm as well as of the original image. The relative surface area of the extracted tumor region was calculated for each application. The results showed that watershed trnsform algorithm succeedeed to detect and extract the brain tumor regions very well according to the consult of a specialist doctor a
... Show MoreEnhancing quality image fusion was proposed using new algorithms in auto-focus image fusion. The first algorithm is based on determining the standard deviation to combine two images. The second algorithm concentrates on the contrast at edge points and correlation method as the criteria parameter for the resulted image quality. This algorithm considers three blocks with different sizes at the homogenous region and moves it 10 pixels within the same homogenous region. These blocks examine the statistical properties of the block and decide automatically the next step. The resulted combined image is better in the contras
... Show More