Kurdish language multifunctional morphemes indicate the different functional morphological, syntactical, and semantic tasks of the morphemes. The present study discusses the multifunctional task of the Morpheme Le in Kurdish Language. The Morpheme Le has marginally been included in other studies, yet up to the present times, there has not been a research inclusively dedicated to thoroughly discuss and clarify its multifunctional aspects. The present study is divided into two chapters: Chapter one discusses the theoretical aspect of chapter two that is entirely concerned with the practical aspect of the morpheme Le. The first part of chapter one sheds light on the morphological aspect of the morpheme while part two discusses the concept of multifunction in Kurdish language including its concepts, types and characteristics. Chapter two is concerned with the practical aspect of the morpheme. Part one of chapter two describes the morphemes’ morphological aspect and part two explains its syntactical aspects. The conclusion sums up the study most important findings and the number of the academic references referred. پوختەی توێژینەوەکە: توێژینەوەکە لەژێر ناونیشانی (فرەئەرکی مۆرفیمەکان لە زمانی کوردیدا، مۆرفیمی (لە) بەنموونە)یە. ئەو ئەرکانە دەخاتەڕوو کە مۆرفیمی (لە) دەیگێڕێت. ئەم کارە بۆ چەمکی فرەئەرکی لە زمانی کوردیدا تەرخانکراوە، یەکێک لە مۆرفیمە پڕئەرکەکان دەخاتەبەرباس، کە ئەویش مۆرفیمەکانی (لە)یە. مۆرفیمی (لە) لە سەرچاوەی جیاوازدا کەم و زۆر باسکراوە، بەڵام توێژینەوەیەکی تایبەتی سەربەخۆی لەسەر نەنووسراوە، نووسرابێتیش بە قووڵی نەچوونەتە بنج و بناوانی و بە تێروتەسەلی لێیان نەکۆڵیوەتەوە. لە هەندێ کاری زانستیدا باسکراوه، بەڵام کارەکە تەنها بۆ ئەو مۆرفیمە تەرخاننەکراوە، بەڵکو لە میانەی ئەو کارەدا، مۆرفیمی (لە)ش هاتۆتە بەرباسکردن. لەم توێژینەوەیەدا هەوڵدراوە، تا بکرێت باس لە هەموو لایەنەکانی مۆرفیمی (لە) بکرێت لە ڕووی وشەسازی و ڕستەسازی و تەنانەت لەڕووی واتاشەوە و ئەرکە جیاجیاکانی دیاریبکرێت. مۆرفیمی (لە) یەکێکە لە مۆرفیمە چالاکەکانی زمانی کوردی و لە زۆربەی ئاستەکانی زماندا ئەرکی پێسپێردراوە. گرنگیی ئەم توێژینەوە لەوەدایە، بە پوختی و تێروتەسەلی تیشک دەخاتەسەر ئەرکە جیاجیاکانی مۆرفیمی (لە) لەڕووی وشەسازی و ڕستەسازی ...ەوە،هتد. سنووری توێژینەوەکەش لە هەردوو ئاستی وشەسازی و ڕستەسازیدا ئەنجامدراوە، جارجاریش پەنجە بۆ لایەنی واتاییش بردراوە. لەم توێژینەوەیەدا ڕێبازی وەسفی شیکاری-ڕەخنەیی بەکارهاتووە و نموونەکان وەرگیراون و شیکردنەوەیان بۆ کراوە و لەهەر شوێنێکیش هەڵە و کەموکووڕی بەدیکرابێ، سەرنج و ڕەخنە لە بارەیانەوە تۆمارکراوە. توێژینەوەکە بۆ دوو بەش، دابەشکراوه:
Fire is one of the most critical risks devastating to human life and property. Therefore, humans make different efforts to deal with fire hazards. Many techniques have been developed to assess fire safety risks. One of these methods is to predict the outbreak of a fire in buildings, and although it is hard to predict when a fire will start, it is critical to do so to safeguard human life and property. This research deals with evaluating the safety risks of the existing building in the city of Samawah/Iraq and determining the appropriateness of these buildings in terms of safety from fire hazards. Twelve parameters are certified based on the National Fire Protection Association (NFPA20
The rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com
... Show MoreWildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob
... Show MoreKey words:Jasminumsambac, Volatile oil, Antioxidant.
In this work, porous silicon gas sensor hs been fabricated on n-type crystalline silicon (c-Si) wafers of (100) orientation denoted by n-PS using electrochemical etching (ECE) process at etching time 10 min and etching current density 40 mA/cm2. Deposition of the catalyst (Cu) is done by immersing porous silicon (PS) layer in solution consists of 3ml from (Cu) chloride with 4ml (HF) and 12ml (ethanol) and 1 ml (H2O2). The structural, morphological and gas sensing behavior of porous silicon has been studied. The formation of nanostructured silicon is confirmed by using X-ray diffraction (XRD) measurement as well as it shows the formation of an oxide silicon layer due to chemical reaction. Atomic force microscope for PS illustrates that the p
... Show More