The calculation of the oil density is more complex due to a wide range of pressuresand temperatures, which are always determined by specific conditions, pressure andtemperature. Therefore, the calculations that depend on oil components are moreaccurate and easier in finding such kind of requirements. The analyses of twenty liveoil samples are utilized. The three parameters Peng Robinson equation of state istuned to get match between measured and calculated oil viscosity. The Lohrenz-Bray-Clark (LBC) viscosity calculation technique is adopted to calculate the viscosity of oilfrom the given composition, pressure and temperature for 20 samples. The tunedequation of state is used to generate oil viscosity values for a range of temperature andpressure extends from the reservoir to surface conditions.The generated viscosity data is utilized in the neural network tool (NN) to get fittingmodel correlates the viscosity of oil with composition, pressure and temperature. Theresulted error and the correlation coefficient of the model constructed are close to 0and 1 respectively. The NN model is also tested with data that are not used in set upthe model. The results proved the validity of the model. Moreover, the model’soutcomes demonstrate its superiority to selected empirical correlations.
In this paper , an efficient new procedure is proposed to modify third –order iterative method obtained by Rostom and Fuad [Saeed. R. K. and Khthr. F.W. New third –order iterative method for solving nonlinear equations. J. Appl. Sci .7(2011): 916-921] , using three steps based on Newton equation , finite difference method and linear interpolation. Analysis of convergence is given to show the efficiency and the performance of the new method for solving nonlinear equations. The efficiency of the new method is demonstrated by numerical examples.
This paper focuses on developing a self-starting numerical approach that can be used for direct integration of higher-order initial value problems of Ordinary Differential Equations. The method is derived from power series approximation with the resulting equations discretized at the selected grid and off-grid points. The method is applied in a block-by-block approach as a numerical integrator of higher-order initial value problems. The basic properties of the block method are investigated to authenticate its performance and then implemented with some tested experiments to validate the accuracy and convergence of the method.
In data transmission a change in single bit in the received data may lead to miss understanding or a disaster. Each bit in the sent information has high priority especially with information such as the address of the receiver. The importance of error detection with each single change is a key issue in data transmission field.
The ordinary single parity detection method can detect odd number of errors efficiently, but fails with even number of errors. Other detection methods such as two-dimensional and checksum showed better results and failed to cope with the increasing number of errors.
Two novel methods were suggested to detect the binary bit change errors when transmitting data in a noisy media.Those methods were: 2D-Checksum me
The educational sector is one of the important sectors in the world, and it is considered one of the means of community development. In addition, it is one of the means of making the country’s renaissance and devel-opment because it represents the factory of thinking minds that make change. There is no doubt that this sector is the same as any other sector. The deficit in the studied scientific planning has been prolonged, which led to its deterioration, and the problems of education remain diverse and inherited from previous time periods, where the hierarchical cluster analysis was used on postgraduate students in universities in Iraq, except for Kurdistan region, and the number of universities that were included in the study was
... Show MoreThis paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi
The study aims to discuss the relation between imported inflation and international trade of Iraqi economy for the period (1990-2015) by using annual data. To achieve the study aim, statistical and Econometrics methods are used through NARDL model to explain non-linear relation because it’s a model assigned to measure non-linear relations and as we know most economic relations are non-linear, beside explaining positive and negative effects of imported inflation, and to reach the research aim deductive approach was adopted through using descriptive method to describe and determine phenomenon. Beside the inductive approach by g statistical and standard tools to get the standard model explains the
... Show More