Pharmaceutical-instigated pollution is a major concern, especially in relation to aquatic environments and drugs such as meropenem antibiotics. Adsorbents, such as multi-walled carbon nanotubes, offer potential as means of removing polluting meropenem antibiotics and other similar compounds from water. In order to evaluate the effectiveness of multi-walled carbon nanotubes in this capacity, various experimental parameters, including contact time, initial concentration, pH, temperature and the dose of adsorbent have been investigated. The Langmuir and the Freundlich isotherm models have been used. The data obtained using a modified Langmuir model have been consistent with the experimental ones; the best pH value has been obtained to have the maximum uptake capacity with the hights coefficient of determination. The adsorption kinetics data is in accordance with pseudo-second order model for adsorption processes, which is in line with the measured data. The results of this thermodynamic research indicate that the reaction that removes meropenem antibiotics from water by adsorption is exothermic. A combination of mechanisms is responsible for meropenem antibiotics adsorption to adsorbent, including electrostatic and π–π EDA interactions, hydrophobic interaction, functional groups and molecule substitution. According to the research findings, multi-walled carbon nanotubes offer a potential method that can be quickly deployed in order to address pharmaceutical contamination of water.
The emphasis of Master Production Scheduling (MPS) or tactic planning is on time and spatial disintegration of the cumulative planning targets and forecasts, along with the provision and forecast of the required resources. This procedure eventually becomes considerably difficult and slow as the number of resources, products and periods considered increases. A number of studies have been carried out to understand these impediments and formulate algorithms to optimise the production planning problem, or more specifically the master production scheduling (MPS) problem. These algorithms include an Evolutionary Algorithm called Genetic Algorithm, a Swarm Intelligence methodology called Gravitational Search Algorithm (GSA), Bat Algorithm (BAT), T
... Show MoreSixty samples of commercially available contact lens solutions were collected from students at the Pharmacy College/Baghdad University. The types of lenses used varied from medical to cosmetic. They were cultured to diagnose any microbial contamination within the solutions. Both used and unused solutions were subject for culturing. Thirty six (60%) used samples showed bacterial growth, fungal growth was absent. Pseudomonas aeruginosa accounts for the highest number of isolates (25%) followed by E. coli (21%), Staphylococcus epidermidis (6.6%), Pseudomonas fluorescence (5%) and Proteus mirabilis (1.6%) respectively. Only one (1) unused (sealed) sample showed growth of P. fluorescence.
... Show MoreCarbides or nitrides thin films present materials with good mechanical properties for industrial applications as they can be coatings at low temperatures serve temperature sensitive surfaces. In this work the effect of the C percentage on the mechanical properties represented by the Young modulus (E) of combinatorial magnetron sputtered TiCx (34%x˂65%) has been studied. The structure of the produced films is TiC independent on the C concentration. The mechanical properties are increased with increasing the C concentration up to 50%, and then decreasing with further C % increasing. These results can be explained by considering the resultant residual stresses.
The research targets study of influence of additives on sand mold’s properties and, consequently, on
that of carbon steel CK45 casts produced by three molds. Three materials were selected for addition
to sand mix at weight percentages. These are sodium carbonates, glycerin and oat flour. Sand molds
of studied properties were produced to get casts from such molds. The required tests were made to
find the best additives with respect to properties of cast. ANSYS software is used to demonstrate
the stresses distribution of each produced materials. It is shown that the mechanical properties of
casts produced is improved highly with sodium carbonates and is less with oat flour and it is seem a
few with glycerin additives
Epoxy (EP) – Silica (SiO2) composites are well known composites used in microelectronic industry . So it is important to study their dielectric behavior under different conditions such as
the presence carbon black (UV absorber) and immersion in the water for 30 days .
Dielectric properties were calculated over the frequency range 102 – 106 Hz for epoxy composites with different weight % of micrometer 1.5μm SiO2 particles (60%, 65% and 70wt%) modified with 0.5wt% silane coupling agent to improve adhesion between EP and SiO2 phases .
The corrosion behavior of carbon steel at different Temperatures and in water containing different sodium chloride
concentrations under 3 bar pressure has been investigated using weight loss method . The carbon steel specimens were
immersed in water containing (100,400,700,1000PPM) of NaCl solution and under temperature was increased from
(90-120ºC) under pressures of 3 bar. The results of this investigation indicated that corrosion rate increased with NaCl
concentrations and Temperature.
Antibacterial activity of CNSs against Staphylococcus aureus and Escherichia coli was estimated. Higher inhibition zone of 18 mm and 20 mm were observed against S. aureus and E.coli, respectively, at a concentration of 2 mg/ml of carbon nanosphere after 24 hrs of incubation at 37 ºC. In vitro cytotoxicity experiment was performed on two parasite strains of Leishmania donovani and Leishmania tropica by using MTT assay. L. donovani revealed more sensitiv to the CNSs than L. tropica. An intermediate level of cytotoxicity of 51.31 % was observed when 2.4 mg/ml of CNSs was incubated with L. donovani, while weak cytotoxicity of 37.20 % was shown when the
... Show MoreSamples prepared by using carbon black as a filler material and phenolic resin as a binder. The samples were pressed in a (3) cm diameter cylindrical die to (250)MPa and treated thermally within temperature range of (600-1000)oC for two and three hours. Physical properties tests were performed, like density, porosity, and X-ray tests. Moreover vicker microhardness and electric resistivity tests were done. From the results, it can be concluded that density was increased while porosity was decreased gradually with increasing temperature and treating time. In microhardness test, it found that more temperature and treating time cause more hardness. Finally the resistivity was decreased in steps with temperature and treating time. It can be c
... Show MoreThis study shows that it is possible to fabricate and characterize green bimetallic nanoparticles using eco-friendly reduction and a capping agent, which is then used for removing the orange G dye (OG) from an aqueous solution. Characterization techniques such as scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDAX), X-Ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) were applied on the resultant bimetallic nanoparticles to ensure the size, and surface area of particles nanoparticles. The results found that the removal efficiency of OG depends on the G‑Fe/Cu‑NPs concentration (0.5-2.0 g.L-1), initial pH (2‑9), OG concentration (10-50 mg.L-1), and temperature (30-50 °C). The batch experiments showed
... Show More