The UV−VIS absorption spectroscopy technique was used to study the formation of a new complex of charge transfer (CT) between bioactive organic molecules as (Nystatin) containing both a π-electrons from a conjugated system and lone-pair of electrons (amine) with Tetrachloro-1,4 benzoquinone (TCBQ) as a π-acceptor in which the transferred electron goes into its vacant anti-bonding molecular orbitals. The Tyrian purple-colored complex formed was quantitatively measured at 544 nm. This complex shows obeying Beer's law within the concentration range of (10-90) μg.ml-1The stoichiometry of the formed complex between the (Nys.) and (TCBQ) was found 1:2 as evaluated by continuous variation (Job's method) and mole ratio method The value of molar absorptivity was calculated at 7038.2840 L.mol-1.cm-1, while Sandell’s sensitivity value was estimated to be 0.01315 μg.cm-2, while LOD and LOQ were found to be 0.5661and 1.71558 μg.ml-1, respectively. The Charge-Transfer complex association constant (KCT) value was evaluated using Benesi-Hildebrand equation and was found to be 3.00E+03 L.mol-1. This procedure was successfully involved in the analysis of pharmaceutical formulations.
The research aims to estimate missing values using covariance analysis method Coons way to the variable response or dependent variable that represents the main character studied in a type of multi-factor designs experiments called split block-design (SBED) so as to increase the accuracy of the analysis results and the accuracy of statistical tests based on this type of designs. as it was noted in the theoretical aspect to the design of dissident sectors and statistical analysis have to analyze the variation in the experience of experiment )SBED) and the use of covariance way coons analysis according to two methods to estimate the missing value, either in the practical side of it has been implemented field experiment wheat crop in
... Show MoreThis paper deals with the thirteenth order differential equations linear and nonlinear in boundary value problems by using the Modified Adomian Decomposition Method (MADM), the analytical results of the equations have been obtained in terms of convergent series with easily computable components. Two numerical examples results show that this method is a promising and powerful tool for solving this problems.
Due to its importance in physics and applied mathematics, the non-linear Sturm-Liouville problems
witnessed massive attention since 1960. A powerful Mathematical technique called the Newton-Kantorovich
method is applied in this work to one of the non-linear Sturm-Liouville problems. To the best of the authors’
knowledge, this technique of Newton-Kantorovich has never been applied before to solve the non-linear
Sturm-Liouville problems under consideration. Accordingly, the purpose of this work is to show that this
important specific kind of non-linear Sturm-Liouville differential equations problems can be solved by
applying the well-known Newton-Kantorovich method. Also, to show the efficiency of appl
This paper focuses on developing a self-starting numerical approach that can be used for direct integration of higher-order initial value problems of Ordinary Differential Equations. The method is derived from power series approximation with the resulting equations discretized at the selected grid and off-grid points. The method is applied in a block-by-block approach as a numerical integrator of higher-order initial value problems. The basic properties of the block method are investigated to authenticate its performance and then implemented with some tested experiments to validate the accuracy and convergence of the method.
This paper presents new modification of HPM to solve system of 3 rd order PDEs with initial condition, for finding suitable accurate solutions in a wider domain.
The present paper focuses on the study of some characteristics of
comets ions by photometry method which represent by CCD camera
which it provide seeing these images in a graded light. From 0-255
when Zero (low a light intensity) and 255 (highlight intensity). These
differences of photonic intensity can be giving us a curve which
appear from any line of this image.
From these equations the focus is concentrating on determine the
temperature distribution, velocity distribution, and intensity number
distribution which is give number of particles per unit volume.
The results explained the interaction near the cometary nucleus
which is mainly affected by the new ions added to the density of the
solar wind, th
In this paper, a least squares group finite element method for solving coupled Burgers' problem in 2-D is presented. A fully discrete formulation of least squares finite element method is analyzed, the backward-Euler scheme for the time variable is considered, the discretization with respect to space variable is applied as biquadratic quadrangular elements with nine nodes for each element. The continuity, ellipticity, stability condition and error estimate of least squares group finite element method are proved. The theoretical results show that the error estimate of this method is . The numerical results are compared with the exact solution and other available literature when the convection-dominated case to illustrate the effic
... Show MoreThis paper has the interest of finding the approximate solution (APPS) of a nonlinear variable coefficients hyperbolic boundary value problem (NOLVCHBVP). The given boundary value problem is written in its discrete weak form (WEFM) and proved have a unique solution, which is obtained via the mixed Galerkin finite element with implicit method that reduces the problem to solve the Galerkin nonlinear algebraic system (GNAS). In this part, the predictor and the corrector techniques (PT and CT, respectively) are proved at first convergence and then are used to transform the obtained GNAS to a linear GLAS . Then the GLAS is solved using the Cholesky method (ChMe). The stability and the convergence of the method are stud
... Show More