There is an evidence that channel estimation in communication systems plays a crucial issue in recovering the transmitted data. In recent years, there has been an increasing interest to solve problems due to channel estimation and equalization especially when the channel impulse response is fast time varying Rician fading distribution that means channel impulse response change rapidly. Therefore, there must be an optimal channel estimation and equalization to recover transmitted data. However. this paper attempt to compare epsilon normalized least mean square (ε-NLMS) and recursive least squares (RLS) algorithms by computing their performance ability to track multiple fast time varying Rician fading channel with different values of Doppler frequency, as well as mean square deviation (MSD) has simulated to measure the difference between original channel and what is estimated. The simulation results of this study showed that (ε-NLMS) tend to perform fast time varying Rician fading channel better than (RLS) adaptive filter.
The emphasis of Master Production Scheduling (MPS) or tactic planning is on time and spatial disintegration of the cumulative planning targets and forecasts, along with the provision and forecast of the required resources. This procedure eventually becomes considerably difficult and slow as the number of resources, products and periods considered increases. A number of studies have been carried out to understand these impediments and formulate algorithms to optimise the production planning problem, or more specifically the master production scheduling (MPS) problem. These algorithms include an Evolutionary Algorithm called Genetic Algorithm, a Swarm Intelligence methodology called Gravitational Search Algorithm (GSA), Bat Algorithm (BAT), T
... Show MoreIntrusion detection system is an imperative role in increasing security and decreasing the harm of the computer security system and information system when using of network. It observes different events in a network or system to decide occurring an intrusion or not and it is used to make strategic decision, security purposes and analyzing directions. This paper describes host based intrusion detection system architecture for DDoS attack, which intelligently detects the intrusion periodically and dynamically by evaluating the intruder group respective to the present node with its neighbors. We analyze a dependable dataset named CICIDS 2017 that contains benign and DDoS attack network flows, which meets certifiable criteria and is ope
... Show MoreAdministrative procedures in various organizations produce numerous crucial records and data. These
records and data are also used in other processes like customer relationship management and accounting
operations.It is incredibly challenging to use and extract valuable and meaningful information from these data
and records because they are frequently enormous and continuously growing in size and complexity.Data
mining is the act of sorting through large data sets to find patterns and relationships that might aid in the data
analysis process of resolving business issues. Using data mining techniques, enterprises can forecast future
trends and make better business decisions.The Apriori algorithm has bee
The consumption of dried bananas has increased because they contain essential nutrients. In order to preserve bananas for a longer period, a drying process is carried out, which makes them a light snack that does not spoil quickly. On the other hand, machine learning algorithms can be used to predict the sweetness of dried bananas. The article aimed to study the effect of different drying times (6, 8, and 10 hours) using an air dryer on some physical and chemical characteristics of bananas, including CIE-L*a*b, water content, carbohydrates, and sweetness. Also predicting the sweetness of dried bananas based on the CIE-L*a*b ratios using machine learn- ing algorithms RF, SVM, LDA, KNN, and CART. The results showed that increasing the drying
... Show MoreThis research aims to solve the problem of selection using clustering algorithm, in this research optimal portfolio is formation using the single index model, and the real data are consisting from the stocks Iraqi Stock Exchange in the period 1/1/2007 to 31/12/2019. because the data series have missing values ,we used the two-stage missing value compensation method, the knowledge gap was inability the portfolio models to reduce The estimation error , inaccuracy of the cut-off rate and the Treynor ratio combine stocks into the portfolio that caused to decline in their performance, all these problems required employing clustering technic to data mining and regrouping it within clusters with similar characteristics to outperform the portfolio
... Show MoreThe reconciliation of tax reconciliation is one of the legal methods used by the financial authority in Iraq, which is done with the taxpayer
The research dealt with the weakness of tax revenues for many reasons, including tax evasion, which led to the search for ways to reduce evasion to increase the tax revenue, and settlement reconciliation one of these means .
The research proceeded from the premise that the use of a more broadly settled settlement would govern the tax evasion of taxpayers.
The researchers used a series of studies and previous research, books and other sources related to the subject of research, and this was done through the theoretical framework, and the practical aspect that included the fin
... Show MoreThe aim of this paper to study the effect of the implicit factors on the entrepreneurial spirit of the students of the Algerian university. Our structural model was proposed based on the model (Shapiro et Sokol, 1982) and the model (Ajzen, 1991). We tested it on a sample of 163 university students at the University of Algiers 3. The model consists of a set of variables (the intention of contracting as a dependent variable, structural and social educational support as independent variables). The results showed that educational and social support factors affect the entrepreneurial spirit of students more than structural support. The Applied Impacts are the enhancing of knowledge capacities of university stu
... Show MoreBP algorithm is the most widely used supervised training algorithms for multi-layered feedforward neural net works. However, BP takes long time to converge and quite sensitive to the initial weights of a network. In this paper, a modified cuckoo search algorithm is used to get the optimal set of initial weights that will be used by BP algorithm. And changing the value of BP learning rate to improve the error convergence. The performance of the proposed hybrid algorithm is compared with the stan dard BP using simple data sets. The simulation result show that the proposed algorithm has improved the BP training in terms of quick convergence of the solution depending on the slope of the error graph.