Preferred Language
Articles
/
3Bb8zIcBVTCNdQwCJGHd
Two efficient methods for solving Schlömilch’s integral equation
...Show More Authors
Purpose

In this paper, the exact solutions of the Schlömilch’s integral equation and its linear and non-linear generalized formulas with application are solved by using two efficient iterative methods. The Schlömilch’s integral equations have many applications in atmospheric, terrestrial physics and ionospheric problems. They describe the density profile of electrons from the ionospheric for awry occurrence of the quasi-transverse approximations. The paper aims to discuss these issues.

Design/methodology/approach

First, the authors apply a regularization method combined with the standard homotopy analysis method to find the exact solutions for all forms of the Schlömilch’s integral equation. Second, the authors implement the regularization method with the variational iteration method for the same purpose. The effectiveness of the regularization-Homotopy method and the regularization-variational method is shown by using them for several illustrative examples, which have been solved by other authors using the so-called regularization-Adomian method.

Findings

The implementation of the two methods demonstrates the usefulness in finding exact solutions.

Practical implications

The authors have applied the developed methodology to the solution of the Rayleigh equation, which is an important equation in fluid dynamics and has a variety of applications in different fields of science and engineering. These include the analysis of batch distillation in chemistry, scattering of electromagnetic waves in physics, isotopic data in contaminant hydrogeology and others.

Originality/value

In this paper, two reliable methods have been implemented to solve several examples, where those examples represent the main types of the Schlömilch’s integral models. Each method has been accompanied with the use of the regularization method. This process constructs an efficient dealing to get the exact solutions of the linear and non-linear Schlömilch’s integral equation which is easy to implement. In addition to that, the accompanied regularization method with each of the two used methods proved its efficiency in handling many problems especially ill-posed problems, such as the Fredholm integral equation of the first kind.

Crossref
View Publication
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Using Bernoulli Equation to Solve Burger's Equation
...Show More Authors

In this paper we find the exact solution of Burger's equation after reducing it to Bernoulli equation. We compare this solution with that given by Kaya where he used Adomian decomposition method, the solution given by chakrone where he used the Variation iteration method (VIM)and the solution given by Eq(5)in the paper of M. Javidi. We notice that our solution is better than their solutions.

View Publication Preview PDF
Crossref
Publication Date
Tue Jun 30 2015
Journal Name
Al-khwarizmi Engineering Journal
Integral Sliding Mode Control Design for Electronic Throttle Valve System
...Show More Authors

Abstract

 One of the major components in an automobile engine is the throttle valve part. It is used to keep up with emissions and fuel efficiency low. Design a control system to the throttle valve is newly common requirement trend in automotive technology. The non-smoothness nonlinearity in throttle valve model are due to the friction model and the nonlinear spring, the uncertainty in system parameters and non-satisfying the matching condition are the main obstacles when designing a throttle plate controller.

In this work, the theory of the Integral Sliding Mode Control (ISMC) is utilized to design a robust controller for the Electronic Throttle Valve (ETV) system. From the first in

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Design an Integral Sliding Mode Controller for a Nonlinear System
...Show More Authors

The goal of this paper is to design a robust controller for controlling a pendulum
system. The control of nonlinear systems is a common problem that is facing the researchers in control systems design. The Sliding Mode Controller (SMC) is the best solution for controlling a nonlinear system. The classical SMC consists from two phases. The first phase is the reaching phase and the second is the sliding phase. The SMC suffers from the chattering phenomenon which is considered as a severe problem and undesirable property. It is a zigzag motion along the switching surface. In this paper, the chattering is reduced by using a saturation function instead of sign function. In spite of SMC is a good method for controlling a nonlinear system b

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Engineering
Design of an Optimal Integral Backstepping Controller for a Quadcopter
...Show More Authors

In this paper, an Integral Backstepping Controller (IBC) is designed and optimized for full control, of rotational and translational dynamics, of an unmanned Quadcopter (QC). Before designing the controller, a mathematical model for the QC is developed in a form appropriate for the IBC design. Due to the underactuated property of the QC, it is possible to control the QC Cartesian positions (X, Y, and Z) and the yaw angle through ordering the desired values for them. As for the pitch and roll angles, they are generated by the position controllers. Backstepping Controller (BC) is a practical nonlinear control scheme based on Lyapunov design approach, which can, therefore, guarantee the convergence of the position tracking

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Malaysian Journal Of Biochemistry And Molecular Biology
Efficiency of primer design tools in evaluation of two molecular methods to detect two single nucleotide polymorphisms related with atherosclerosis
...Show More Authors

Scopus
Publication Date
Sun Dec 07 2014
Journal Name
Baghdad Science Journal
New Iterative Method for Solving Nonlinear Equations
...Show More Authors

The aim of this paper is to propose an efficient three steps iterative method for finding the zeros of the nonlinear equation f(x)=0 . Starting with a suitably chosen , the method generates a sequence of iterates converging to the root. The convergence analysis is proved to establish its five order of convergence. Several examples are given to illustrate the efficiency of the proposed new method and its comparison with other methods.

View Publication Preview PDF
Crossref
Publication Date
Sat Sep 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
New Approach for Solving Multi – Objective Problems
...Show More Authors

  There are many researches deals with constructing an efficient solutions for real problem having Multi - objective confronted with each others. In this paper we construct a decision for Multi – objectives based on building a mathematical model formulating a unique objective function by combining the confronted objectives functions. Also we are presented some theories concerning this problem. Areal application problem has been presented to show the efficiency of the performance of our model and the method. Finally we obtained some results by randomly generating some problems.

View Publication Preview PDF
Crossref
Publication Date
Sun Mar 01 2015
Journal Name
5th International Conference On Energy Aware Computing Systems & Applications
Area efficient test circuit for library standard cell qualification
...Show More Authors

High cost of qualifying library standard cells on silicon wafer limits the number of test circuits on the test chip. This paper proposes a technique to share common load circuits among test circuits to reduce the silicon area. By enabling the load sharing, number of transistors for the common load can be reduced significantly. Results show up to 80% reduction in silicon area due to load area reduction.

View Publication
Scopus Crossref
Publication Date
Tue Nov 01 2016
Journal Name
2016 International Conference On Advances In Electrical, Electronic And Systems Engineering (icaees)
Efficient routing algorithm for VANETs based on distance factor
...Show More Authors

There has been a great deal of research into the considerable challenge of managing of traffic at road junctions; its application to vehicular ad hoc network (VANET) has proved to be of great interest in the developed world. Dynamic topology is one of the vital challenges facing VANET; as a result, routing of packets to their destination successfully and efficiently is a non-simplistic undertaking. This paper presents a MDORA, an efficient and uncomplicated algorithm enabling intelligent wireless vehicular communications. MDORA is a robust routing algorithm that facilitates reliable routing through communication between vehicles. As a position-based routing technique, the MDORA algorithm, vehicles' precise locations are used to establish th

... Show More
View Publication
Scopus (8)
Crossref (6)
Scopus Crossref
Publication Date
Thu Dec 21 2023
Journal Name
Mathematical Modelling Of Engineering Problems
Recovering Time-Dependent Coefficients in a Two-Dimensional Parabolic Equation Using Nonlocal Overspecified Conditions via ADE Finite Difference Schemes
...Show More Authors

View Publication Preview PDF
Scopus (1)
Scopus Crossref