A mathematical eco-epidemiological model consisting of harvested prey–predator system involving fear and disease in the prey population is formulated and studied. The prey population is supposed to be separated into two groups: susceptible and infected. The susceptible prey grows logistically, whereas the infected prey cannot reproduce and instead competes for the environment’s carrying capacity. Furthermore, the disease is transferred through contact from infected to susceptible individuals, and there is no inherited transmission. The existence, positivity, and boundedness of the model’s solution are discussed. The local stability analysis is carried out. The persistence requirements are established. The global behavior of the system is investigated with the use of the Lyapunov method. An application to the Sotomoyar theorem of local bifurcation is performed around the equilibrium points. In the end, the system is numerically simulated to confirm our obtained analytical results and specify the control set of parameters. Bifurcation diagrams are used to show the dynamical behavior as a function of some parameters. It is obtained that the prey’s fear stabilizes the system, while the disease and harvest cause extinction in one or more species.
Transmission lines are generally subjected to faults, so it is advantageous to determine these faults as quickly as possible. This study uses an Artificial Neural Network technique to locate a fault as soon as it happens on the Doukan-Erbil of 132kv double Transmission lines network. CYME 7.1-Programming/Simulink utilized simulation to model the suggested network. A multilayer perceptron feed-forward artificial neural network with a back propagation learning algorithm is used for the intelligence locator's training, testing, assessment, and validation. Voltages and currents were applied as inputs during the neural network's training. The pre-fault and post-fault values determined the scaled values. The neural network's p
... Show MorePyridine-2, 6-dicarbohydrazide comp (2) was synthesized from ethanolic solution of diethyl pyridine-2, 6- dicarboxylate comp (1) with excess of hydrazine hydrate. Newly five polymers (P1-P5) were synthesized from reaction of pyridine-2, 6-dicarbohydrazide comp (2) with five different di carboxylic acid in the presence of poly phosphoric acid (PPA). The antibacterial activity of the synthesized polymers was screened against some gram positive and gram negative bacteria. Antifungal activity of these polymers was evaluated in vitro against some yeast like fungi such as albicans (candida albicans). Polymers P3, P4 and P5 exhibited highest antibacterial and antifungal against all microorganisms under test.
We demonstrate that the selective hydrogenation of acetylene depends on energy profile of the partial and full hydrogenation routes and the thermodynamic stability of adsorbed C2H2 in comparison to C2H4.
Reservoir characterization plays a crucial role in comprehending the distribution of formation properties and fluids within heterogeneous reservoirs. This knowledge is instrumental in constructing an accurate three-dimensional model of the reservoir, facilitating predictions regarding porosity, permeability, and fluid flow distribution. Among the various methods employed for reservoir characterization, the hydraulic flow unit stands out as a widely adopted approach. By effectively subdividing the reservoir into distinct zones, each characterized by unique petrophysical and geological properties, hydraulic flow units enable comprehensive reservoir analysis. The concept of the flow unit is closely tied to the flow zone indicator, a cr
... Show MoreThis paper discusses using H2 and H∞ robust control approaches for designing control systems. These approaches are applied to elementary control system designs, and their respective implementation and pros and cons are introduced. The H∞ control synthesis mainly enforces closed-loop stability, covering some physical constraints and limitations. While noise rejection and disturbance attenuation are more naturally expressed in performance optimization, which can represent the H2 control synthesis problem. The paper also applies these two methodologies to multi-plant systems to study the stability and performance of the designed controllers. Simulation results show that the H2 controller tracks a desirable cl
... Show MoreOff-nucleus isotropic magnetic shielding (σiso(r)) and multi-points nucleus independent chemical shift (NICS(0-2 Å)) index were utilized to find the impacts of the isomerization of gas-phase furfuraldehyde (FD) on bonding and aromaticity of FD. Multidimensional (1D to 3D) grids of ghost atoms (bqs) were used as local magnetic probes to evaluate σiso(r) through gauge-including atomic orbitals (GIAO) at density functional theory (DFT) and B3LYP functional/6-311+G(d,p) basis set level of theory. 1D σiso(r) responses along each bond of FD were examined. Also, a σiso(r) 2D-scan was performed to obtain σiso(r) behavior at vertical heights of 0–1 Å above the FD plane in its cis, transition state (TS) and trans forms. New techniques fo
... Show MoreIn this research, experimental and numerical studies were carried out to investigate the performance of encased glass-fiber-reinforced polymer (GFRP) beams under fire. The test specimens were divided into two peer groups to be tested under the effect of ambient and elevated temperatures. The first group was statically tested to investigate the monotonic behavior of the specimens. The second group was exposed to fire loading first and then statically tested to explore the residual behavior of the burned specimens. Adding shear connectors and web stiffeners to the GFRP beam was the main parameter in this investigation. Moreover, service loads were applied to the tested beams during the fire. Utilizing shear connectors, web stiffeners,
... Show MoreChromium tanned leather wastes (CTLW) and vegetable tanned leather wastes (VTLW) were used as adsorbent materials to remove the Biebrich scarlet dye (BS), as an anionic dye from wastewater, using an adsorption method. The effects of various factors, such as weight of leather waste, time of shaking, and the starting concentration of Biebrich scarlet dye, temperature and pH were studied. It described the adsorption process using Langmuir and Freundlich isotherm models. The obtained results agreed well with the Langmuir model, and the maximum adsorption capacities of CTLW and VTLW were 73.5294 and 78.1250 mg.g⁻¹, respectively, suggesting a monolayer adsorption process. The adsorption kinetic was found to follow a pseudo-second-order kinetic
... Show More