Preferred Language
Articles
/
3BaeR4cBVTCNdQwCwkBF
Adaptive Approximation Control of Robotic Manipulators: Centralized and Decentralized Control Algorithms
...Show More Authors

The regressor-based adaptive control is useful for controlling robotic systems with uncertain parameters but with known structure of robot dynamics. Unmodeled dynamics could lead to instability problems unless modification of control law is used. In addition, exact calculation of regressor for robots with more than 6 degrees of freedom is hard to be calculated, and the task could be more complex for robots. Whereas the adaptive approximation control is a powerful tool for controlling robotic systems with unmodeled dynamics. The local (partitioned) approximation-based adaptive control includes representation of the uncertain matrices and vectors in the robot model as finite combinations of basis functions. Update laws for the weighting matrices are obtained by the Lyapunov-like design. Therefore, this work is focused function approximation-based control algorithms considering centralized and decentralized approaches. In this work, the following control algorithms are designed: (1) Adaptive hybrid regressor-approximation control. This work attempts to combine the features of both the regressor and the approximation techniques in adaptive control. The regressor technique is a powerful tool for adaptive control of the known structure of modeling while the approximation is useful for estimation of time-varying uncertainty. Therefore, this work proposes adaptive hybrid regressor and approximation control for robots in both free and constrained spaces. The control law consists of three terms: (i) regressor term for initial estimation of the known structure of the robot dynamics, e.g. inertia matrix, Coriolis and centripetal matrix and gravity vector, and (ii) approximation term for estimation of internal and external disturbances resulted from the inexact calculation of regressor matrix and unknown modeling of friction, etc, and (iii) robust term consists of switching sgn(.) function. The control law is designed based on updating the uncertain parameters and the weighting coefficients corresponding to regressor and approximation respectively with position/force tracking purposes. The proposed controller is stable in the sense of Lyapunov stability. (2) Decentralized adaptive partitioned approximation control. Partitioned approximation control is avoided in most decentralized control algorithms; however, it is essential to design feedforward control with improved tracking accuracy. As a result, this work is focused on decentralized adaptive partitioned approximation control for complex robotic systems using the orthogonal basis functions as strong approximators. In essence, the partitioned approximation technique is intrinsically decentralized with some modifications. The proposed decentralized control law consists of three terms: the partitioned approximation-based feedforward term that is necessary for precise tracking, the high gain-based feedback term, and the adaptive sliding gain-based term for compensation of modeling error. The passivity property is essential to prove the stability of local stability of the individual subsystem with guaranteed global stability. Simulation experiments on 2-link robot and 6-link biped robot are performed to prove the effectiveness of the proposed algorithms.

View Publication
Publication Date
Mon Apr 05 2021
Journal Name
Solid State Technology
Genetic Algorithms in Construction Project Management: A Review
...Show More Authors

Genetic algorithms (GA) are a helpful instrument for planning and controlling the activities of a project. It is based on the technique of survival of the fittest and natural selection. GA has been used in different sectors of construction and building however that is rarely documented. This research aimed to examine the utilisation of genetic algorithms in construction project management. For this purpose, the research focused on the benefits and challenges of genetic algorithms, and the extent to which genetic algorithms is utilised in construction project management. Results showed that GA provides an ability of generating near optimal solutions which can be adopted to reduce complexity in project management and resolve difficult problem

... Show More
View Publication Preview PDF
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Physics: Conference Series
Improve topic modeling algorithms based on Twitter hashtags
...Show More Authors
Abstract<p>Today with increase using social media, a lot of researchers have interested in topic extraction from Twitter. Twitter is an unstructured short text and messy that it is critical to find topics from tweets. While topic modeling algorithms such as Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) are originally designed to derive topics from large documents such as articles, and books. They are often less efficient when applied to short text content like Twitter. Luckily, Twitter has many features that represent the interaction between users. Tweets have rich user-generated hashtags as keywords. In this paper, we exploit the hashtags feature to improve topics learned</p> ... Show More
View Publication
Scopus (20)
Crossref (19)
Scopus Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Intelligence framework dust forecasting using regression algorithms models
...Show More Authors

<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c

... Show More
View Publication
Scopus (3)
Scopus Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Arpn Journal Of Engineering And Applied Sciences
Achieving a theoretical approximation characterize the stopping power of heavy ion in D-T plasma
...Show More Authors

The dependence of the energy losses or the stopping power for the ion contribution in D- T hot plasma fuels upon the corresponding energies and the related penetrating factorare arrive by using by a theoretical approximation models. In this work we reach a compatible agreement between our results and the corresponding experimental results.

View Publication Preview PDF
Scopus
Publication Date
Fri Dec 09 2016
Journal Name
Éditions Universitaires EuropÉennes Est Gestionée Par Omniscriptum Management Gmbh
Adaptive Modeling of Urban Dynamics With Mobile Phone Database
...Show More Authors

The communication networks (mobile phone networks, social media platforms) produce digital traces from their usages. This type of information help to understand and analyze the human mobility in very accurate way. By these analyzes over cities, it can give powerful data on daily citizen activities, urban planners have in that way, relevant indications for decision making on design and development. As well as, the Call detail Records (CDRs) provides valuable spatiotemporal data at the level of citywide or even nationwide. The CDRs could be analyzed to extract the life patterns and individuals mobility in an observed urban area and during ephemeral events. Whereas, their analysis gives conceptual views about human density and mobility pattern

... Show More
Publication Date
Sun Dec 28 2025
Journal Name
مجلة جامعة صنعاء للعلوم التطبيقية والتكنولوجيا
From Algorithms to Applications: A Review of AI-Based Face Recognition and Identity Verification
...Show More Authors

Face recognition and identity verification are now critical components of current security and verification technology. The main objective of this review is to identify the most important deep learning techniques that have contributed to the improvement in the accuracy and reliability of facial recognition systems, as well as highlighting existing problems and potential future research areas. An extensive literature review was conducted with the assistance of leading scientific databases such as IEEE Xplore, ScienceDirect, and SpringerLink and covered studies from the period 2015 to 2024. The studies of interest were related to the application of deep neural networks, i.e., CNN, Siamese, and Transformer-based models, in face recogni

... Show More
View Publication
Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Iaes International Journal Of Artificial Intelligence (ij-ai)
Analyzing the behavior of different classification algorithms in diabetes prediction
...Show More Authors

<span lang="EN-US">Diabetes is one of the deadliest diseases in the world that can lead to stroke, blindness, organ failure, and amputation of lower limbs. Researches state that diabetes can be controlled if it is detected at an early stage. Scientists are becoming more interested in classification algorithms in diagnosing diseases. In this study, we have analyzed the performance of five classification algorithms namely naïve Bayes, support vector machine, multi layer perceptron artificial neural network, decision tree, and random forest using diabetes dataset that contains the information of 2000 female patients. Various metrics were applied in evaluating the performance of the classifiers such as precision, area under the c

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sat Dec 31 2022
Journal Name
Mathematical Modelling Of Engineering Problems
Investigation of Energy Efficient Clustering Algorithms in WSNs: A Review
...Show More Authors

In recent years, Wireless Sensor Networks (WSNs) are attracting more attention in many fields as they are extensively used in a wide range of applications, such as environment monitoring, the Internet of Things, industrial operation control, electric distribution, and the oil industry. One of the major concerns in these networks is the limited energy sources. Clustering and routing algorithms represent one of the critical issues that directly contribute to power consumption in WSNs. Therefore, optimization techniques and routing protocols for such networks have to be studied and developed. This paper focuses on the most recent studies and algorithms that handle energy-efficiency clustering and routing in WSNs. In addition, the prime

... Show More
View Publication
Scopus (9)
Crossref (2)
Scopus Crossref
Publication Date
Tue Mar 01 2011
Journal Name
Al-khwarizmi Engineering Journal
Noise Removal of ECG Signal Using Recursive Least Square Algorithms
...Show More Authors

This paper shows an approach for Electromyography (ECG) signal processing based on linear and nonlinear adaptive filtering using Recursive Least Square (RLS) algorithm to remove two kinds of noise that affected the ECG signal. These are the High Frequency Noise (HFN) and Low Frequency Noise (LFN). Simulation is performed in Matlab. The ECG, HFN and LFN signals used in this study were downloaded from ftp://ftp.ieee.org/uploads/press/rangayyan/, and then the filtering process was obtained by using adaptive finite impulse response (FIR) that illustrated better results than infinite impulse response (IIR) filters did.

View Publication Preview PDF
Publication Date
Wed Mar 01 2023
Journal Name
Iaes International Journal Of Artificial Intelligence (ij-ai)
Design and implementation monitoring robotic system based on you only look once model using deep learning technique
...Show More Authors

<span lang="EN-US">The need for robotics systems has become an urgent necessity in various fields, especially in video surveillance and live broadcasting systems. The main goal of this work is to design and implement a rover robotic monitoring system based on raspberry pi 4 model B to control this overall system and display a live video by using a webcam (USB camera) as well as using you only look once algorithm-version five (YOLOv5) to detect, recognize and display objects in real-time. This deep learning algorithm is highly accurate and fast and is implemented by Python, OpenCV, PyTorch codes and the Context Object Detection Task (COCO) 2020 dataset. This robot can move in all directions and in different places especially in

... Show More
View Publication
Scopus (13)
Crossref (4)
Scopus Crossref