The intelligent buildings provided various incentives to get highly inefficient energy-saving caused by the non-stationary building environments. In the presence of such dynamic excitation with higher levels of nonlinearity and coupling effect of temperature and humidity, the HVAC system transitions from underdamped to overdamped indoor conditions. This led to the promotion of highly inefficient energy use and fluctuating indoor thermal comfort. To address these concerns, this study develops a novel framework based on deep clustering of lagrangian trajectories for multi-task learning (DCLTML) and adding a pre-cooling coil in the air handling unit (AHU) to alleviate a coupling issue. The proposed DCLTML exhibits great overall control and is suitable for multi-objective optimisation based on cooperative multi-agent systems (CMAS). The framework of DCLTML is used greedy iterative training to get an optimal set of weights and tabulated as a layer for each clustering structure. Such layers can deal with the challenges of large space and its massive data. Then the layer weights of each cluster are tuned by the Quasi-Newton (QN) algorithm to make the action sequence of CMAS optimal. Such a policy of CMAS effectively manipulates the inputs of the AHU, where the agents of the AHU activate the natural ventilation and set chillers into an idle state when the outdoor temperature crosses the recommended value. So, it is reasonable to assess the impact potential of thermal mass and hybrid ventilation strategy in reducing cooling energy; accordingly, the assigning results of the proposed DCLTML show that its main cooling coil saves >40% compared to the conventional benchmarks. Besides significant energy savings and improving environmental comfort, the DCLTML exhibits superior high-speed response and robustness performance and eliminates fatigue and wear due to shuttering valves. The results show that the DCLTML algorithm is a promising new approach for controlling HVAC systems. It is more robust to environmental variations than traditional controllers, and it can learn to control the HVAC system in a way that minimises energy consumption. The DCLTML algorithm is still under development, but it can potentially revolutionise how HVAC systems are controlled.
The efficiency of management is determining factor for the success or failure of agricultural projects generally and Livestock particularly achieving its objectives. Therefore, this research came to diagnose the most important variables that determine the efficiency of management using the probability regression models to measure the probability of management efficient of broilers production projects using random sample included (60) broilers projects represented 11.6% of Baghdad province (research community) in 2016. After estimating the relationship between the management efficiency (descriptive dependent variable) and the independent variables affecting it (age, educational level, production index (PI), experience). The results
... Show MoreIn recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve
... Show MoreIRA Dawood, JOURNAL OF SPORT SCIENCES, 2016 - Cited by 3
The aim of this research to study.
The dimensions of organizational learning have been defined(learning dynamics, individuals empowerment, knowledge management and technology application) as well as the dimensions of learning organization have been defined (culture values, knowledge transfer, communication and employee characteristics), Asset completion questionnaire was used to collect data of this research from a purposely sample represent forty employees who works in Iraqi Planning Ministry at different positions. The research divided to four parts :
The first to the research methodology, the second to the theoretical review o
... Show MoreThis study used deep eutectic solvent (DES) as the liquid membrane in a bulk liquid membrane system (BLM) to remove glycerol from waste cooking oil‐based biodiesel. The DES was prepared from choline chloride and tetraethylene glycol at a molar ratio of 1:5. Diethyl ether was employed as a novel strip phase for the glycerol in BLM. The effects of the DES: biodiesel ratio, stirring speed, and extraction time on the extraction and stripping efficiencies were investigated. The results showed that BLM could give better glycerol removal from biodiesel than mechanical shaking. Increasing the DES: biodiesel ratio, stirring speed, and extraction time can enhance glycerol removal from the feed phase, achievi
The objective of the present study is to determine the nature and direction of the correlation between mathematical excellence and learning styles as defined by the Entwistle, model in fifth-grade scientific female students. The descriptive correlational approach was implemented by the two researchers to accomplish the research objectives. A scale was developed to assess the learning styles of female students in the sample in accordance with the Entwistle, model. : (Knowledge, understanding, application, analysis, synthesis, evaluation, systematic thinking, creativity), and the research community was determined by the female students of the scientific fifth grade in the morning preparatory and secondary schools of the General Direct
... Show MoreThe problem of slow learning in primary schools’ pupils is not a local or private one. It is also not related to a certain society other than others or has any relation to a particular culture, it is rather an international problem of global nature. It is one of the well-recognized issues in education field. Additionally, it is regarded as one of the old difficulties to which ancient people gave attention. It is discovered through the process of observing human behaviour and attempting to explain and predict it.
Through the work of the two researchers via frequent visits to primary schools that include special classes for slow learning pupils, in addition to the fact that one of the researcher has a child with slow learning issue, t
<p>Energy and memory limitations are considerable constraints of sensor nodes in wireless sensor networks (WSNs). The limited energy supplied to network nodes causes WSNs to face crucial functional limitations. Therefore, the problem of limited energy resource on sensor nodes can only be addressed by using them efficiently. In this research work, an energy-balancing routing scheme for in-network data aggregation is presented. This scheme is referred to as Energy-aware and load-Balancing Routing scheme for Data Aggregation (hereinafter referred to as EBR-DA). The EBRDA aims to provide an energy efficient multiple-hop routing to the destination on the basis of the quality of the links between the source and destination. In
... Show MoreThe PbSe alloy was prepared in evacuated quarts tubs by the method of melt quenching from element, the PbSe thin films prepared by thermal evaporation method and deposited at different substrate temperature (Ts) =R.T ,373 and 473K . The thin films that deposited at room temperature (R.T=303)K was annealed at temperature, Ta= R.T, 373 and 473K . By depended on D.C conductivity measurements calculated the density of state (DOS), The density of extended state N(Eext) increases with increasing the Ts and Ta, while the density of localized state N(Eloc) is decreased . We investigated the absorption coefficient (?) that measurement from reflection and transmission spectrum result, and the effect of Ts and Ta on it , also we calculated the tai
... Show More