The intelligent buildings provided various incentives to get highly inefficient energy-saving caused by the non-stationary building environments. In the presence of such dynamic excitation with higher levels of nonlinearity and coupling effect of temperature and humidity, the HVAC system transitions from underdamped to overdamped indoor conditions. This led to the promotion of highly inefficient energy use and fluctuating indoor thermal comfort. To address these concerns, this study develops a novel framework based on deep clustering of lagrangian trajectories for multi-task learning (DCLTML) and adding a pre-cooling coil in the air handling unit (AHU) to alleviate a coupling issue. The proposed DCLTML exhibits great overall control and is suitable for multi-objective optimisation based on cooperative multi-agent systems (CMAS). The framework of DCLTML is used greedy iterative training to get an optimal set of weights and tabulated as a layer for each clustering structure. Such layers can deal with the challenges of large space and its massive data. Then the layer weights of each cluster are tuned by the Quasi-Newton (QN) algorithm to make the action sequence of CMAS optimal. Such a policy of CMAS effectively manipulates the inputs of the AHU, where the agents of the AHU activate the natural ventilation and set chillers into an idle state when the outdoor temperature crosses the recommended value. So, it is reasonable to assess the impact potential of thermal mass and hybrid ventilation strategy in reducing cooling energy; accordingly, the assigning results of the proposed DCLTML show that its main cooling coil saves >40% compared to the conventional benchmarks. Besides significant energy savings and improving environmental comfort, the DCLTML exhibits superior high-speed response and robustness performance and eliminates fatigue and wear due to shuttering valves. The results show that the DCLTML algorithm is a promising new approach for controlling HVAC systems. It is more robust to environmental variations than traditional controllers, and it can learn to control the HVAC system in a way that minimises energy consumption. The DCLTML algorithm is still under development, but it can potentially revolutionise how HVAC systems are controlled.
In the presence of deep submicron noise, providing reliable and energy‐efficient network on‐chip operation is becoming a challenging objective. In this study, the authors propose a hybrid automatic repeat request (HARQ)‐based coding scheme that simultaneously reduces the crosstalk induced bus delay and provides multi‐bit error protection while achieving high‐energy savings. This is achieved by calculating two‐dimensional parities and duplicating all the bits, which provide single error correction and six errors detection. The error correction reduces the performance degradation caused by retransmissions, which when combined with voltage swing reduction, due to its high error detection, high‐energy savings are achieved. The res
... Show MoreAggregate production planning (APP) is one of the most significant and complicated problems in production planning and aim to set overall production levels for each product category to meet fluctuating or uncertain demand in future. and to set decision concerning hiring, firing, overtime, subcontract, carrying inventory level. In this paper, we present a simulated annealing (SA) for multi-objective linear programming to solve APP. SA is considered to be a good tool for imprecise optimization problems. The proposed model minimizes total production and workforce costs. In this study, the proposed SA is compared with particle swarm optimization (PSO). The results show that the proposed SA is effective in reducing total production costs and req
... Show MoreClinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b
Lately, a growing interest has been emerging in age estimation from face images because of the wide range of potential implementations in law enforcement, security control, and human computer interactions. Nevertheless, in spite of the advances in age estimation, it is still a challenging issue. This is due to the fact that face aging process is not only set by distinct elements, such as genetic factors, but by extrinsic factors, such as lifestyle, expressions, and environment as well. This paper applied machine learning technique to intelligent age estimation from facial images using J48 classifier on FG_NET dataset. The proposed work consists of three phases; the first phase is image preprocessing which include
... Show MoreThe experimental study showed the use of closed cavity wall (the thickness of the cavity 5cm) made a percentage reduction in the cooling load caused by heat gain from the wall by (21.5 %) compared with the conventional wall. also the thermal resistance of the closed cavity was an average (0.2 m2.oC/W).
The experimental results of the study showed that the use of closed cavity wall reduced the average temperature of the inner surface of the wall during the day, and that the reduction was an average (0.45 oC) when compared with the conventional wall , as well as the use of closed cavity wall reduced the temperature difference range of the inner surface of the wall during the day, and that the
... Show MoreIn this paper, a FPGA model of intelligent traffic light system with power saving was built. The intelligent traffic light system consists of sensors placed on the side's ends of the intersection to sense the presence or absence of vehicles. This system reduces the waiting time when the traffic light is red, through the transition from traffic light state to the other state, when the first state spends a lot of time, because there are no more vehicles. The proposed system is built using VHDL, simulated using Xilinx ISE 9.2i package, and implemented using Spartan-3A XC3S700A FPGA kit. Implementation and Simulation behavioral model results show that the proposed intelligent traffic light system model satisfies the specified operational req
... Show MoreAnalyzing sentiment and emotions in Arabic texts on social networking sites has gained wide interest from researchers. It has been an active research topic in recent years due to its importance in analyzing reviewers' opinions. The Iraqi dialect is one of the Arabic dialects used in social networking sites, characterized by its complexity and, therefore, the difficulty of analyzing sentiment. This work presents a hybrid deep learning model consisting of a Convolution Neural Network (CNN) and the Gated Recurrent Units (GRU) to analyze sentiment and emotions in Iraqi texts. Three Iraqi datasets (Iraqi Arab Emotions Data Set (IAEDS), Annotated Corpus of Mesopotamian-Iraqi Dialect (ACMID), and Iraqi Arabic Dataset (IAD)) col
... Show MoreGender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea
... Show MoreIn recent years images have been used widely by online social networks providers or numerous organizations such as governments, police departments, colleges, universities, and private companies. It held in vast databases. Thus, efficient storage of such images is advantageous and its compression is an appealing application. Image compression generally represents the significant image information compactly with a smaller size of bytes while insignificant image information (redundancy) already been removed for this reason image compression has an important role in data transfer and storage especially due to the data explosion that is increasing significantly. It is a challenging task since there are highly complex unknown correlat
... Show MoreSentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other l
... Show More