Preferred Language
Articles
/
3BaXAowBVTCNdQwCxfVm
Deep clustering of Lagrangian trajectory for multi-task learning to energy saving in intelligent buildings using cooperative multi-agent
...Show More Authors

The intelligent buildings provided various incentives to get highly inefficient energy-saving caused by the non-stationary building environments. In the presence of such dynamic excitation with higher levels of nonlinearity and coupling effect of temperature and humidity, the HVAC system transitions from underdamped to overdamped indoor conditions. This led to the promotion of highly inefficient energy use and fluctuating indoor thermal comfort. To address these concerns, this study develops a novel framework based on deep clustering of lagrangian trajectories for multi-task learning (DCLTML) and adding a pre-cooling coil in the air handling unit (AHU) to alleviate a coupling issue. The proposed DCLTML exhibits great overall control and is suitable for multi-objective optimisation based on cooperative multi-agent systems (CMAS). The framework of DCLTML is used greedy iterative training to get an optimal set of weights and tabulated as a layer for each clustering structure. Such layers can deal with the challenges of large space and its massive data. Then the layer weights of each cluster are tuned by the Quasi-Newton (QN) algorithm to make the action sequence of CMAS optimal. Such a policy of CMAS effectively manipulates the inputs of the AHU, where the agents of the AHU activate the natural ventilation and set chillers into an idle state when the outdoor temperature crosses the recommended value. So, it is reasonable to assess the impact potential of thermal mass and hybrid ventilation strategy in reducing cooling energy; accordingly, the assigning results of the proposed DCLTML show that its main cooling coil saves >40% compared to the conventional benchmarks. Besides significant energy savings and improving environmental comfort, the DCLTML exhibits superior high-speed response and robustness performance and eliminates fatigue and wear due to shuttering valves. The results show that the DCLTML algorithm is a promising new approach for controlling HVAC systems. It is more robust to environmental variations than traditional controllers, and it can learn to control the HVAC system in a way that minimises energy consumption. The DCLTML algorithm is still under development, but it can potentially revolutionise how HVAC systems are controlled.

Scopus Clarivate Crossref
View Publication
Publication Date
Sun Dec 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Use Principal Component Analysis Technique to Dimensionality Reduction to Multi Source
...Show More Authors

This paper tackles with principal component analysis method (PCA ) to dimensionality reduction in the case of linear combinations to digital image processing and analysis. The PCA is statistical technique that shrinkages a multivariate data set consisting of inter-correlated variables into a data set consisting of variables that are uncorrelated linear combination, while ensuring the least possible loss of useful information. This method was applied to a group of satellite images of a certain area in the province of Basra, which represents the mouth of the Tigris and Euphrates rivers in the Shatt al-Arab in the province of Basra.

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Apr 06 2014
Journal Name
Journal Of Educational And Psychological Researches
Effectiveness of cooperative learning in at the implementation of floral material for celli graph and decoration
...Show More Authors

The purpose of this resesrh know (the effectiveness of cooperative lerarning implementation of floral material for calligraphy and ornamentation) To achieve the aim of the research scholar put the two zeros hypotheses: in light of the findings of the present research the researcher concluded a number of conclusions, including: -
1 - Sum strategy helps the learner to be positive in all the information and regulations, monitoring and evaluation during the learning process.
2 - This strategy helps the learner to use information and knowledge and their use in various educational positions, and to achieve better education to increase its ability to develop thinking skills and positive trends towards the article.
In light of this, the

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 15 2025
Journal Name
Iraqi Journal Of Laser
Performance Enhancement of Metasurface Grating Polarizer Using Deep Learning for Quantum Key Distribution Systems
...Show More Authors

Metasurface polarizers are essential optical components in modern integrated optics and play a vital role in many optical applications including Quantum Key Distribution systems in quantum cryptography. However, inverse design of metasurface polarizers with high efficiency depends on the proper prediction of structural dimensions based on required optical response. Deep learning neural networks can efficiently help in the inverse design process, minimizing both time and simulation resources requirements, while better results can be achieved compared to traditional optimization methods. Hereby, utilizing the COMSOL Multiphysics Surrogate model and deep neural networks to design a metasurface grating structure with high extinction rat

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
3D scenes semantic segmentation using deep learning based Survey
...Show More Authors
Abstract<p>Semantic segmentation realization and understanding is a stringent task not just for computer vision but also in the researches of the sciences of earth, semantic segmentation decompose compound architectures in one elements, the most mutual object in a civil outside or inside senses must classified then reinforced with information meaning of all object, it’s a method for labeling and clustering point cloud automatically. Three dimensions natural scenes classification need a point cloud dataset to representation data format as input, many challenge appeared with working of 3d data like: little number, resolution and accurate of three Dimensional dataset . Deep learning now is the po</p> ... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Mon Jan 09 2023
Journal Name
2023 15th International Conference On Developments In Esystems Engineering (dese)
Deep Learning-Based Speech Enhancement Algorithm Using Charlier Transform
...Show More Authors

View Publication
Scopus (7)
Crossref (5)
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Computers, Materials &amp; Continua
Credit Card Fraud Detection Using Improved Deep Learning Models
...Show More Authors

View Publication
Scopus (9)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Multi – Linear in Multiple Nonparametric Regression , Detection and Treatment Using Simulation
...Show More Authors

             It is the regression analysis is the foundation stone of knowledge of statistics , which mostly depends on the ordinary least square method , but as is well known that the way the above mentioned her several conditions to operate accurately and the results can be unreliable , add to that the lack of certain conditions make it impossible to complete the work and analysis method and among those conditions are the multi-co linearity problem , and we are in the process of detected that problem between the independent variables using farrar –glauber test , in addition to the requirement linearity data and the lack of the condition last has been resorting to the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Aug 19 2022
Journal Name
Mathematical Statistician And Engineering Applications (msea)
Application of TOPSIS method for Multi-Criteria Decision Making for poultry fields By using GIS in Hilla district
...Show More Authors

Statistical methods and statistical decisions making were used to arrange and analyze the primary data to get norms which are used with Geographic Information Systems (GIS) and spatial analysis programs to identify the animals production and poultry units in strategic nutrition channels, also the priorities of food insecurity through the local production and import when there is no capacity for production. The poultry production is one of the most important commodities that satisfy human body protein requirements, also the most important criteria to measure the development and prosperity of nations. The poultry fields of Babylon Governorate are located in Abi Ghareg and Al_Kifil centers according to many criteria or factors such as the popu

... Show More
Publication Date
Fri Dec 01 2023
Journal Name
Al-khwarizmi Engineering Journal
An Overview of Audio-Visual Source Separation Using Deep Learning
...Show More Authors

    In this article, the research presents a general overview of deep learning-based AVSS (audio-visual source separation) systems. AVSS has achieved exceptional results in a number of areas, including decreasing noise levels, boosting speech recognition, and improving audio quality. The advantages and disadvantages of each deep learning model are discussed throughout the research as it reviews various current experiments on AVSS. The TCD TIMIT dataset (which contains top-notch audio and video recordings created especially for speech recognition tasks) and the Voxceleb dataset (a sizable collection of brief audio-visual clips with human speech) are just a couple of the useful datasets summarized in the paper that can be used to test A

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Oct 01 2016
Journal Name
2016 2nd International Conference On Science In Information Technology (icsitech)
Cloud computing sensitive data protection using multi layered approach
...Show More Authors

View Publication
Scopus (3)
Scopus Crossref