The intelligent buildings provided various incentives to get highly inefficient energy-saving caused by the non-stationary building environments. In the presence of such dynamic excitation with higher levels of nonlinearity and coupling effect of temperature and humidity, the HVAC system transitions from underdamped to overdamped indoor conditions. This led to the promotion of highly inefficient energy use and fluctuating indoor thermal comfort. To address these concerns, this study develops a novel framework based on deep clustering of lagrangian trajectories for multi-task learning (DCLTML) and adding a pre-cooling coil in the air handling unit (AHU) to alleviate a coupling issue. The proposed DCLTML exhibits great overall control and is suitable for multi-objective optimisation based on cooperative multi-agent systems (CMAS). The framework of DCLTML is used greedy iterative training to get an optimal set of weights and tabulated as a layer for each clustering structure. Such layers can deal with the challenges of large space and its massive data. Then the layer weights of each cluster are tuned by the Quasi-Newton (QN) algorithm to make the action sequence of CMAS optimal. Such a policy of CMAS effectively manipulates the inputs of the AHU, where the agents of the AHU activate the natural ventilation and set chillers into an idle state when the outdoor temperature crosses the recommended value. So, it is reasonable to assess the impact potential of thermal mass and hybrid ventilation strategy in reducing cooling energy; accordingly, the assigning results of the proposed DCLTML show that its main cooling coil saves >40% compared to the conventional benchmarks. Besides significant energy savings and improving environmental comfort, the DCLTML exhibits superior high-speed response and robustness performance and eliminates fatigue and wear due to shuttering valves. The results show that the DCLTML algorithm is a promising new approach for controlling HVAC systems. It is more robust to environmental variations than traditional controllers, and it can learn to control the HVAC system in a way that minimises energy consumption. The DCLTML algorithm is still under development, but it can potentially revolutionise how HVAC systems are controlled.
During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreMillions of lives might be saved if stained tissues could be detected quickly. Image classification algorithms may be used to detect the shape of cancerous cells, which is crucial in determining the severity of the disease. With the rapid advancement of digital technology, digital images now play a critical role in the current day, with rapid applications in the medical and visualization fields. Tissue segmentation in whole-slide photographs is a crucial task in digital pathology, as it is necessary for fast and accurate computer-aided diagnoses. When a tissue picture is stained with eosin and hematoxylin, precise tissue segmentation is especially important for a successful diagnosis. This kind of staining aids pathologists in disti
... Show MoreOver the past few decades, the health benefits are under threat as many commonly used antibiotics have become less and less effective against certain illnesses not only because many of them produce toxic reactions but also due to the emergence of drug-resistant bacteria. The clinical use of a combination of antibiotic therapy for Pseudomonas aeruginosa infections is probably more effective than monotherapy. The present study aims to estimate the antibacterial and antibiofilm activity of Conocarpus erectus leaves extracts against multi-drug resistant P. aeruginosa isolated from different hospitals in Baghdad city. One hundred fifty different clinical specimens were collected from patients from September 2021 to January 2022. All samples were
... Show MoreThe education sector suffers from many problems, including the scarcity of schools that can absorb the increasing number of students in light of the increasing population growth rate, as some regions suffer from a lack of opening of new schools or the expansion of existing schools to increase their capacity so that attention is required. The research sought to identify the level of maturity of project management at the research site (Building Department in Al-Karkh I/ Ministry of Education) Being responsible for educational projects and their implementation and to know that, the ten areas of the knowledge guide to project management PMBOK have been adopted according to the PM3 model (one of the models of maturity
... Show MoreThe problem of multi assembly line balancing appears as one of the most prominent and complex type of problem. The research problem of this dissertation is concerned with choosing the suitable method that includes the nature of the processes of the multi assembly type of the sewing line at factory no. (7). The State Company for Leather Manufacturing. The sewing line currently suffers from idle times at work stations which resulted in low production levels that do not meet the production plans. The authors have devised a flexible simulation model which uses the uniform distribution to generate task time for each shoe type produced by the factory. The simulation of the multi assembly line was based on assigni
... Show More