Preferred Language
Articles
/
3Ba2j4cBVTCNdQwCcFVI
On Thompson type estimators for the mean of normal distribution‏
...Show More Authors

Publication Date
Sat Sep 23 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
An Efficient S.brunken Estimators For The Mean Of Normal Population With Kuown Variance
...Show More Authors

This  article  co;nsiders a shrunken  estimator  Â·Of  Al-Hermyari·   and

AI Gobuii (.1) to estimate  the mean (8) of a normal clistributicm N (8 cr4)  with  known variance  (cr+),  when  <:I    guess value (So) av11il ble about the mean (B) as· an initial estrmate. This estimator is shown to be

more efficient tl1an the class-ical estimators  especially when 8 is close to 8•. General expressions .for bias and MSE -of considered  estitnator are gi 'en, witeh  some examples.  Nut.nerical cresdlts, comparisons  and

conclusions ate reported.

View Publication Preview PDF
Publication Date
Sat Nov 01 2014
Journal Name
International Journal Of Statistics
Single and Double Stage Shrinkage Estimators for the Normal Mean with the Variance Cases
...Show More Authors

View Publication
Publication Date
Sun Apr 06 2008
Journal Name
Diyala Journal For Pure Science
Preliminary Test Bayesian –Shrunken Estimators for the Mean of Normal Distribution with Known Variance
...Show More Authors

Publication Date
Sun Dec 05 2010
Journal Name
Baghdad Science Journal
Pre-Test Single and Double Stage Shrunken Estimators for the Mean of Normal Distribution with Known Variance
...Show More Authors

This paper is concerned with pre-test single and double stage shrunken estimators for the mean (?) of normal distribution when a prior estimate (?0) of the actule value (?) is available, using specifying shrinkage weight factors ?(?) as well as pre-test region (R). Expressions for the Bias [B(?)], mean squared error [MSE(?)], Efficiency [EFF(?)] and Expected sample size [E(n/?)] of proposed estimators are derived. Numerical results and conclusions are drawn about selection different constants included in these expressions. Comparisons between suggested estimators, with respect to classical estimators in the sense of Bias and Relative Efficiency, are given. Furthermore, comparisons with the earlier existing works are drawn.

View Publication Preview PDF
Crossref
Publication Date
Thu May 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Modified Thompson –Type Testimators for the Parameters of Simple Linear Regression Model
...Show More Authors

 Dens itiad ns vcovadoay fnre Dec2isco0D,ia asrn2trcds4 fenve ns 6ocfo ts ida%n2notd, rasr sedno6t(a asrn2trcd fnre sc2a 2cynwnvtrnco co nrs wcd2 /nt sedno6t(a fan(er wtvrcd ﯿ)ﺔ mh         Dens r,ia cw asrn2trcds et/a laao vcosnyaday wcd asrn2trno( rea itdt2arads ﻘ cw sn2i%a %noatd da(dassnco 2cya%4 feao t idncd asrn2tra cw rea itdt2arad /t%ua )ﻘm ns t/tn%tl%a4 st, ﻘxh Dens ﻘx ets laao dawadday no srtrnsrnvt% %nradtrudas ts (uass icnor tlcur rea itdt2arad ﻘh         Dea aMidassncos wcd Snts4 Oato -9utday 8ddcd )O-8m toy .a%trn/a 8wwnvnaov, cw rea idcicsay asrn2trcds tda clrtnoayh 1u2adnvt% dasu%rs tda idc/nyay feao rea

... Show More
View Publication Preview PDF
Publication Date
Mon Sep 25 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Double Stage Shrinkage Estimator For the Variance of Normal Distribution With Unknown Mean
...Show More Authors

     This paper is concerned with preliminary test double stage shrinkage estimators to estimate the variance (s2) of normal distribution when a prior estimate  of the actual value (s2) is a available when the mean is unknown  , using specifying shrinkage weight factors y(×) in addition to pre-test region (R).

      Expressions for the Bias, Mean squared error [MSE (×)], Relative Efficiency [R.EFF (×)], Expected sample size [E(n/s2)] and percentage of overall sample saved of proposed estimator were derived. Numerical results (using MathCAD program) and conclusions are drawn about selection of different constants including in the me

... Show More
View Publication Preview PDF
Publication Date
Fri Jun 04 2021
Journal Name
Journal Of Interdisciplinary Mathematics
Employ shrinkage technique during estimate normal distribution mean
...Show More Authors

View Publication
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Wed May 10 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Estimate The Mean of Normal Distribution Via Preliminary Test Shrinkage Technique
...Show More Authors

 This paper is concerned with preliminary test single stage shrinkage estimators for the mean (q) of normal distribution with known variance s2 when a prior estimate (q0) of the actule value (q) is available, using specifying shrinkage weight factor y( ) as well as pre-test region (R).         Expressions for the Bias, Mean Squared Error [MSE( )] and Relative Efficiency [R.Eff.( )] of proposed estimators are derived. Numerical results and conclusions are drawn about selection different constants including in these expressions. Comparisons between suggested estimators with respect to usual estimators in the sense of Relative Efficiency are given. Furthermore, comparisons with the earlier existi

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2011
Journal Name
International Journal Of Data Analysis Techniques And Strategies
A class of efficient and modified testimators for the mean of normal distribution using complete data
...Show More Authors

View Publication
Scopus (9)
Crossref (2)
Scopus Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
Comparing Weibull Stress – Strength Reliability Bayesian Estimators for Singly Type II Censored Data under Different loss Functions
...Show More Authors

     The stress(Y) – strength(X) model reliability Bayesian estimation which defines life of a component with strength X and stress Y (the component fails if and only if at any time the applied stress is greater than its strength) has been studied, then the reliability; R=P(Y<X), can be considered as a measure of the component performance. In this paper, a Bayesian analysis has been considered for R when the two variables X and Y are independent Weibull random variables with common parameter α in order to study the effect of each of the two different scale parameters β and λ; respectively, using three different [weighted, quadratic and entropy] loss functions under two different prior functions [Gamma and extension of Jeffery

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref