Determining the face of wearing a mask from not wearing a mask from visual data such as video and still, images have been a fascinating research topic in recent decades due to the spread of the Corona pandemic, which has changed the features of the entire world and forced people to wear a mask as a way to prevent the pandemic that has calmed the entire world, and it has played an important role. Intelligent development based on artificial intelligence and computers has a very important role in the issue of safety from the pandemic, as the Topic of face recognition and identifying people who wear the mask or not in the introduction and deep education was the most prominent in this topic. Using deep learning techniques and the YOLO (”You on
... Show MoreSignificant advances in the automated glaucoma detection techniques have been made through the employment of the Machine Learning (ML) and Deep Learning (DL) methods, an overview of which will be provided in this paper. What sets the current literature review apart is its exclusive focus on the aforementioned techniques for glaucoma detection using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines for filtering the selected papers. To achieve this, an advanced search was conducted in the Scopus database, specifically looking for research papers published in 2023, with the keywords "glaucoma detection", "machine learning", and "deep learning". Among the multiple found papers, the ones focusing
... Show MoreObjectives: To identify the frequency and types of microsatellite instability among a group of sporadic CRC patients and to correlate the findings with clinicopathological characteristics. Methods: During an 8-month period, all patients with sporadic CRC who attended to two teaching hospitals in Baghdad, Iraq were recruited to this cross-sectional study regardless of age, sex, ethnicity, or tumor characteristics. Demographic, clinical, and histopathological features were recorded. DNA was extracted from FFPE-blocks of the resected tumors and normal tissues. PCR amplification of five microsatellite mononucleotide repeat loci (BAT25, BAT26, NR-21, NR-24, and MONO-27) and 2 pentanucleotide repeat control markers (Penta C and Pent
... Show MoreHuman herpes virus-8 (HHV-8) infection has increased recently in Arabic countries. HHV-8 in healthy persons does not necessarily cause life-threatening infection, and however, it causes a more severe infection among immunocompromised patients. The distribution of HHV-8 genotypes varies according to ethnicity and depends on the geographic region prior rapid development of global travel. A cross sectional prospective study included a hundred healthy blood donor samples with a mean age of (36.60±10.381), 81% were positive for molecular detection of HHV-8 DNA. PCR results for HHV-8 were strongly related with risk factors such as the number of sexual relations, previous surgeries, blood transfusion, dental operation, and the number of b
... Show MoreHeart sound is an electric signal affected by some factors during the signal's recording process, which adds unwanted information to the signal. Recently, many studies have been interested in noise removal and signal recovery problems. The first step in signal processing is noise removal; many filters are used and proposed for treating this problem. Here, the Hankel matrix is implemented from a given signal and tries to clean the signal by overcoming unwanted information from the Hankel matrix. The first step is detecting unwanted information by defining a binary operator. This operator is defined under some threshold. The unwanted information replaces by zero, and the wanted information keeping in the estimated matrix. The resulting matrix
... Show MoreAnomaly detection is still a difficult task. To address this problem, we propose to strengthen DBSCAN algorithm for the data by converting all data to the graph concept frame (CFG). As is well known that the work DBSCAN method used to compile the data set belong to the same species in a while it will be considered in the external behavior of the cluster as a noise or anomalies. It can detect anomalies by DBSCAN algorithm can detect abnormal points that are far from certain set threshold (extremism). However, the abnormalities are not those cases, abnormal and unusual or far from a specific group, There is a type of data that is do not happen repeatedly, but are considered abnormal for the group of known. The analysis showed DBSCAN using the
... Show More