The gravity method is a measurement of relatively noticeable variations in the Earth’s gravitational field caused by lateral variations in rock's density. In the current research, a new technique is applied on the previous Bouguer map of gravity surveys (conducted from 1940–1950) of the last century, by selecting certain areas in the South-Western desert of Iraqi-territory within the provinces' administrative boundary of Najaf and Anbar. Depending on the theory of gravity inversion where gravity values could be reflected to density-contrast variations with the depths; so, gravity data inversion can be utilized to calculate the models of density and velocity from four selected depth-slices 9.63 Km, 1.1 Km, 0.682 Km and 0.407 Km. The depths were selected using the power spectrum analysis technique of gravity data. Gravity data are inverted based on gravitational anomalies for each depth slice or level and the extracted equivalent depth data from available wells using a connection curve between densities and velocities, which were mostly compatible with Nafe and Drake's standard curve. The inverted gravity data images highlight the behavior of anomalies/structures in the model and domain of density/velocity, which can be utilized in the processing of the recorded seismic data and time to depth conversion, in parallel with available well's data information within the intended study area of South-Western Iraq.
Hygienic engineering has dedicated a lot of time and energy to studying water filtration because of how important it is to human health. Thorough familiarity with the filtration process is essential for the design engineer to keep up with and profit from advances in filtering technology and equipment as the properties of raw water continue to change. Because it removes sediment, chemicals, odors, and microbes, filtration is an integral part of the water purification process. The most popular technique for treating surface water for municipal water supply is considered fast sand filtration, which can be achieved using either gravity or pressure sand filters. Predicting the performance of units in water treatment plants is
... Show More
An automatic text summarization system mimics how humans summarize by picking the most significant sentences in a source text. However, the complexities of the Arabic language have become challenging to obtain information quickly and effectively. The main disadvantage of the traditional approaches is that they are strictly constrained (especially for the Arabic language) by the accuracy of sentence feature functions, weighting schemes, and similarity calculations. On the other hand, the meta-heuristic search approaches have a feature tha
... Show MoreIt is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy i
... Show MoreThe Normalized Difference Vegetation Index (NDVI) is commonly used as a measure of land surface greenness based on the assumption that NDVI value is positively proportional to the amount of green vegetation in an image pixel area. The Normalized Difference Vegetation Index data set of Landsat based on the remote sensing information is used to estimate the area of plant cover in region west of Baghdad during 1990-2001. The results show that in the period of 1990 and 2001 the plant area in region of Baghdad increased from (44760.25) hectare to (75410.67) hectare. The vegetation area increased during the period 1990-2001, and decreases the exposed area.
A 3D velocity model was created by using stacking velocity of 9 seismic lines and average velocity of 6 wells drilled in Iraq. The model was achieved by creating a time model to 25 surfaces with an interval time between each two successive surfaces of about 100 msec. The summation time of all surfaces reached about 2400 msec, that was adopted according to West Kifl-1 well, which penetrated to a depth of 6000 m, representing the deepest well in the study area. The seismic lines and well data were converted to build a 3D cube time model and the velocity was spread on the model. The seismic inversion modeling of the elastic properties of the horizon and well data was applied to achieve a corrected veloci
... Show MoreThe EMERGE application from Hampsson-Russell suite programs was used in the present study. It is an interesting domain for seismic attributes that predict some of reservoir three dimensional or two dimensional properties, as well as their combination. The objective of this study is to differentiate reservoir/non reservoir units with well data in the Yamama Formation by using seismic tools. P-impedance volume (density x velocity of P-wave) was used in this research to perform a three dimensional seismic model on the oilfield of Nasiriya by using post-stack data of 5 wells. The data (training and application) were utilized in the EMERGE analysis for estimating the reservoir properties of P-wave ve
... Show MoreCalculations and predication a theoretical formulas for the electron drift velocity in a gas medium are achieved to deduced the electron distribution function for different gas concentrations. The calculations are achieved by using the numerical solution for Boltzmann transport equation in two term approximation, using the NOMAD program for the drift velocity in a gas medium. It's necessary to note that the solution is essentially depending upon the elastic and inelastic collision cross section. In order to fixe a good accuracy for the using cross section it's necessary to calculate the electron distribution function and therefore study their behavior. Results about the electron drift velocity show that a decreasing pro
... Show MoreAbstract
This paper is an experimental work to determinate the effect of welding velocity and formed arc energy for CO2-MAG fusion weld pool. The input parameters (arc voltage, wire feed speed and gas flow rate) were investigated to find their effects on the weld joint efficiency. Design of experiment with response surface methodology technique was used to build empirical mathematical models for welding velocity and arc energy in term of the input welding parameters. The predicted quadratic models were statistically checked for adequacy purpose by ANOVA analysis. Additionally, numerical optimization was conducted to obtain the optimum values for welding velocity and arc energy. A good agree
... Show MoreThis study focuses on cation and anion concentrations and their distribution in the Dibdibba aquifer in the Zubair area at Basra city, southern Iraq to assess the groundwater quality for the agricultural purpose. The physicochemical properties (TSS, Ec, pH, cation and anion concentrations) of the groundwater samples through
18 wells was measured. Results showed that the dominant groundwater type is Na, Mg, Ca-Chloride type. The Magnesium Hazard, Sodium Adsorption Ratio, Na%, total dissolved solid, Electrical conductivity and pH were used to assess the suitability of groundwater for irrigation purposes.. The assessment results indicate that the groundwater is characterized by no Mg-harmful, excellent