Preferred Language
Articles
/
2xhpgZUBVTCNdQwCBy56
Inferential Methods for the Dagum Regression Model
...Show More Authors

The Dagum Regression Model, introduced to address limitations in traditional econometric models, provides enhanced flexibility for analyzing data characterized by heavy tails and asymmetry, which is common in income and wealth distributions. This paper develops and applies the Dagum model, demonstrating its advantages over other distributions such as the Log-Normal and Gamma distributions. The model's parameters are estimated using Maximum Likelihood Estimation (MLE) and the Method of Moments (MoM). A simulation study evaluates both methods' performance across various sample sizes, showing that MoM tends to offer more robust and precise estimates, particularly in small samples. These findings provide valuable insights into the analysis of income inequality and wealth distribution using the Dagum model.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Feb 28 2021
Journal Name
Journal Of Economics And Administrative Sciences
Using jack knife to estimation logistic regression model for Breast cancer disease
...Show More Authors

 

It is considered as one of the statistical methods used to describe and estimate the relationship between randomness (Y) and explanatory variables (X). The second is the homogeneity of the variance, in which the dependent variable is a binary response takes two values  (One when a specific event occurred and zero when that event did not happen) such as (injured and uninjured, married and unmarried) and that a large number of explanatory variables led to the emergence of the problem of linear multiplicity that makes the estimates inaccurate, and the method of greatest possibility and the method of declination of the letter was used in estimating A double-response logistic regression model by adopting the Jackna

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Sep 09 2014
Journal Name
Iosr Journal Of Mathematics (iosr-jm)
An Efficient Shrinkage Estimator for the Parameters of Simple Linear Regression Model
...Show More Authors

Publication Date
Sat Dec 31 2022
Journal Name
Journal Of Economics And Administrative Sciences
Using Some Estimation Methods for Mixed-Random Panel Data Regression Models with Serially Correlated Errors with Application
...Show More Authors

This research includes the study of dual data models with mixed random parameters, which contain two types of parameters, the first is random and the other is fixed. For the random parameter, it is obtained as a result of differences in the marginal tendencies of the cross sections, and for the fixed parameter, it is obtained as a result of differences in fixed limits, and random errors for each section. Accidental bearing the characteristic of heterogeneity of variance in addition to the presence of serial correlation of the first degree, and the main objective in this research is the use of efficient methods commensurate with the paired data in the case of small samples, and to achieve this goal, the feasible general least squa

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 11 2025
Journal Name
Al Kut Journal Of Economics And Administrative Sciences
Use of the Bootstrap in the logistic regression model for Breast cancer disease
...Show More Authors

The logistic regression model is one of the oldest and most common of the regression models, and it is known as one of the statistical methods used to describe and estimate the relationship between a dependent random variable and explanatory random variables. Several methods are used to estimate this model, including the bootstrap method, which is one of the estimation methods that depend on the principle of sampling with return, and is represented by a sample reshaping that includes (n) of the elements drawn by randomly returning from (N) from the original data, It is a computational method used to determine the measure of accuracy to estimate the statistics, and for this reason, this method was used to find more accurate estimates. The ma

... Show More
View Publication
Publication Date
Wed May 11 2022
Journal Name
Journal Of Economics And Administrative Sciences
Comparing Some Methods For A single Imputed A missing Observation In Estimating Nonparametric Regression Function
...Show More Authors

In this paper, we will study non parametric model when the response variable have missing data (non response) in observations it under missing mechanisms MCAR, then we suggest Kernel-Based Non-Parametric Single-Imputation instead of missing value and compare it with Nearest Neighbor Imputation by using the simulation about some difference models and with difference cases as the sample size, variance and rate of missing data.      

View Publication Preview PDF
Crossref
Publication Date
Thu Oct 31 2019
Journal Name
Journal Of Engineering And Applied Sciences
Comparison of Estimate Methods of Multiple Linear Regression Model with Auto-Correlated Errors when the Error Distributed with General Logistic
...Show More Authors

In this research, we studied the multiple linear regression models for two variables in the presence of the autocorrelation problem for the error term observations and when the error is distributed with general logistic distribution. The auto regression model is involved in the studying and analyzing of the relationship between the variables, and through this relationship, the forecasting is completed with the variables as values. A simulation technique is used for comparison methods depending on the mean square error criteria in where the estimation methods that were used are (Generalized Least Squares, M Robust, and Laplace), and for different sizes of samples (20, 40, 60, 80, 100, 120). The M robust method is demonstrated the best metho

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Thu Oct 31 2019
Journal Name
Journal Of Engineering And Applied Sciences
Comparison of Estimate Methods of Multiple Linear Regression Model with Auto-Correlated Errors when the Error Distributed with General Logistic
...Show More Authors

In this research, we studied the multiple linear regression models for two variables in the presence of the autocorrelation problem for the error term observations and when the error is distributed with general logistic distribution. The auto regression model is involved in the studying and analyzing of the relationship between the variables, and through this relationship, the forecasting is completed with the variables as values. A simulation technique is used for comparison methods depending

Scopus (1)
Scopus Crossref
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
A comparison among Different Methods for Estimating Regression Parameters with Autocorrelation Problem under Exponentially Distributed Error
...Show More Authors

Multiple linear regressions are concerned with studying and analyzing the relationship between the dependent variable and a set of explanatory variables. From this relationship the values of variables are predicted. In this paper the multiple linear regression model and three covariates were studied in the presence of the problem of auto-correlation of errors when the random error distributed the distribution of exponential. Three methods were compared (general least squares, M robust, and Laplace robust method). We have employed the simulation studies and calculated the statistical standard mean squares error with sample sizes (15, 30, 60, 100). Further we applied the best method on the real experiment data representing the varieties of

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Thu May 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Modified Thompson –Type Testimators for the Parameters of Simple Linear Regression Model
...Show More Authors

 Dens itiad ns vcovadoay fnre Dec2isco0D,ia asrn2trcds4 fenve ns 6ocfo ts ida%n2notd, rasr sedno6t(a asrn2trcd fnre sc2a 2cynwnvtrnco co nrs wcd2 /nt sedno6t(a fan(er wtvrcd ﯿ)ﺔ mh         Dens r,ia cw asrn2trcds et/a laao vcosnyaday wcd asrn2trno( rea itdt2arads ﻘ cw sn2i%a %noatd da(dassnco 2cya%4 feao t idncd asrn2tra cw rea itdt2arad /t%ua )ﻘm ns t/tn%tl%a4 st, ﻘxh Dens ﻘx ets laao dawadday no srtrnsrnvt% %nradtrudas ts (uass icnor tlcur rea itdt2arad ﻘh         Dea aMidassncos wcd Snts4 Oato -9utday 8ddcd )O-8m toy .a%trn/a 8wwnvnaov, cw rea idcicsay asrn2trcds tda clrtnoayh 1u2adnvt% dasu%rs tda idc/nyay feao rea

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 11 2025
Journal Name
Misan Journal Of Academic Studies
Some of Parametric and Non Parametric Estimations for Circular Regression Model via Simulation
...Show More Authors

Circular data (circular sightings) are periodic data and are measured on the unit's circle by radian or grades. They are fundamentally different from those linear data compatible with the mathematical representation of the usual linear regression model due to their cyclical nature. Circular data originate in a wide variety of fields of scientific, medical, economic and social life. One of the most important statistical methods that represents this data, and there are several methods of estimating angular regression, including teachers and non-educationalists, so the letter included the use of three models of angular regression, two of which are teaching models and one of which is a model of educators. ) (DM) (MLE) and circular shrinkage mod

... Show More
View Publication Preview PDF